Annotation of rpl/lapack/lapack/zhbgv.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b ZHBGST
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZHBGV + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbgv.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbgv.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbgv.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZHBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
        !            22: *                         LDZ, WORK, RWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          JOBZ, UPLO
        !            26: *       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       DOUBLE PRECISION   RWORK( * ), W( * )
        !            30: *       COMPLEX*16         AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
        !            31: *      $                   Z( LDZ, * )
        !            32: *       ..
        !            33: *  
        !            34: *
        !            35: *> \par Purpose:
        !            36: *  =============
        !            37: *>
        !            38: *> \verbatim
        !            39: *>
        !            40: *> ZHBGV computes all the eigenvalues, and optionally, the eigenvectors
        !            41: *> of a complex generalized Hermitian-definite banded eigenproblem, of
        !            42: *> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
        !            43: *> and banded, and B is also positive definite.
        !            44: *> \endverbatim
        !            45: *
        !            46: *  Arguments:
        !            47: *  ==========
        !            48: *
        !            49: *> \param[in] JOBZ
        !            50: *> \verbatim
        !            51: *>          JOBZ is CHARACTER*1
        !            52: *>          = 'N':  Compute eigenvalues only;
        !            53: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !            54: *> \endverbatim
        !            55: *>
        !            56: *> \param[in] UPLO
        !            57: *> \verbatim
        !            58: *>          UPLO is CHARACTER*1
        !            59: *>          = 'U':  Upper triangles of A and B are stored;
        !            60: *>          = 'L':  Lower triangles of A and B are stored.
        !            61: *> \endverbatim
        !            62: *>
        !            63: *> \param[in] N
        !            64: *> \verbatim
        !            65: *>          N is INTEGER
        !            66: *>          The order of the matrices A and B.  N >= 0.
        !            67: *> \endverbatim
        !            68: *>
        !            69: *> \param[in] KA
        !            70: *> \verbatim
        !            71: *>          KA is INTEGER
        !            72: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
        !            73: *>          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
        !            74: *> \endverbatim
        !            75: *>
        !            76: *> \param[in] KB
        !            77: *> \verbatim
        !            78: *>          KB is INTEGER
        !            79: *>          The number of superdiagonals of the matrix B if UPLO = 'U',
        !            80: *>          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
        !            81: *> \endverbatim
        !            82: *>
        !            83: *> \param[in,out] AB
        !            84: *> \verbatim
        !            85: *>          AB is COMPLEX*16 array, dimension (LDAB, N)
        !            86: *>          On entry, the upper or lower triangle of the Hermitian band
        !            87: *>          matrix A, stored in the first ka+1 rows of the array.  The
        !            88: *>          j-th column of A is stored in the j-th column of the array AB
        !            89: *>          as follows:
        !            90: *>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
        !            91: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
        !            92: *>
        !            93: *>          On exit, the contents of AB are destroyed.
        !            94: *> \endverbatim
        !            95: *>
        !            96: *> \param[in] LDAB
        !            97: *> \verbatim
        !            98: *>          LDAB is INTEGER
        !            99: *>          The leading dimension of the array AB.  LDAB >= KA+1.
        !           100: *> \endverbatim
        !           101: *>
        !           102: *> \param[in,out] BB
        !           103: *> \verbatim
        !           104: *>          BB is COMPLEX*16 array, dimension (LDBB, N)
        !           105: *>          On entry, the upper or lower triangle of the Hermitian band
        !           106: *>          matrix B, stored in the first kb+1 rows of the array.  The
        !           107: *>          j-th column of B is stored in the j-th column of the array BB
        !           108: *>          as follows:
        !           109: *>          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
        !           110: *>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
        !           111: *>
        !           112: *>          On exit, the factor S from the split Cholesky factorization
        !           113: *>          B = S**H*S, as returned by ZPBSTF.
        !           114: *> \endverbatim
        !           115: *>
        !           116: *> \param[in] LDBB
        !           117: *> \verbatim
        !           118: *>          LDBB is INTEGER
        !           119: *>          The leading dimension of the array BB.  LDBB >= KB+1.
        !           120: *> \endverbatim
        !           121: *>
        !           122: *> \param[out] W
        !           123: *> \verbatim
        !           124: *>          W is DOUBLE PRECISION array, dimension (N)
        !           125: *>          If INFO = 0, the eigenvalues in ascending order.
        !           126: *> \endverbatim
        !           127: *>
        !           128: *> \param[out] Z
        !           129: *> \verbatim
        !           130: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
        !           131: *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
        !           132: *>          eigenvectors, with the i-th column of Z holding the
        !           133: *>          eigenvector associated with W(i). The eigenvectors are
        !           134: *>          normalized so that Z**H*B*Z = I.
        !           135: *>          If JOBZ = 'N', then Z is not referenced.
        !           136: *> \endverbatim
        !           137: *>
        !           138: *> \param[in] LDZ
        !           139: *> \verbatim
        !           140: *>          LDZ is INTEGER
        !           141: *>          The leading dimension of the array Z.  LDZ >= 1, and if
        !           142: *>          JOBZ = 'V', LDZ >= N.
        !           143: *> \endverbatim
        !           144: *>
        !           145: *> \param[out] WORK
        !           146: *> \verbatim
        !           147: *>          WORK is COMPLEX*16 array, dimension (N)
        !           148: *> \endverbatim
        !           149: *>
        !           150: *> \param[out] RWORK
        !           151: *> \verbatim
        !           152: *>          RWORK is DOUBLE PRECISION array, dimension (3*N)
        !           153: *> \endverbatim
        !           154: *>
        !           155: *> \param[out] INFO
        !           156: *> \verbatim
        !           157: *>          INFO is INTEGER
        !           158: *>          = 0:  successful exit
        !           159: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           160: *>          > 0:  if INFO = i, and i is:
        !           161: *>             <= N:  the algorithm failed to converge:
        !           162: *>                    i off-diagonal elements of an intermediate
        !           163: *>                    tridiagonal form did not converge to zero;
        !           164: *>             > N:   if INFO = N + i, for 1 <= i <= N, then ZPBSTF
        !           165: *>                    returned INFO = i: B is not positive definite.
        !           166: *>                    The factorization of B could not be completed and
        !           167: *>                    no eigenvalues or eigenvectors were computed.
        !           168: *> \endverbatim
        !           169: *
        !           170: *  Authors:
        !           171: *  ========
        !           172: *
        !           173: *> \author Univ. of Tennessee 
        !           174: *> \author Univ. of California Berkeley 
        !           175: *> \author Univ. of Colorado Denver 
        !           176: *> \author NAG Ltd. 
        !           177: *
        !           178: *> \date November 2011
        !           179: *
        !           180: *> \ingroup complex16OTHEReigen
        !           181: *
        !           182: *  =====================================================================
1.1       bertrand  183:       SUBROUTINE ZHBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
                    184:      $                  LDZ, WORK, RWORK, INFO )
                    185: *
1.8     ! bertrand  186: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  187: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    188: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  189: *     November 2011
1.1       bertrand  190: *
                    191: *     .. Scalar Arguments ..
                    192:       CHARACTER          JOBZ, UPLO
                    193:       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
                    194: *     ..
                    195: *     .. Array Arguments ..
                    196:       DOUBLE PRECISION   RWORK( * ), W( * )
                    197:       COMPLEX*16         AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
                    198:      $                   Z( LDZ, * )
                    199: *     ..
                    200: *
                    201: *  =====================================================================
                    202: *
                    203: *     .. Local Scalars ..
                    204:       LOGICAL            UPPER, WANTZ
                    205:       CHARACTER          VECT
                    206:       INTEGER            IINFO, INDE, INDWRK
                    207: *     ..
                    208: *     .. External Functions ..
                    209:       LOGICAL            LSAME
                    210:       EXTERNAL           LSAME
                    211: *     ..
                    212: *     .. External Subroutines ..
                    213:       EXTERNAL           DSTERF, XERBLA, ZHBGST, ZHBTRD, ZPBSTF, ZSTEQR
                    214: *     ..
                    215: *     .. Executable Statements ..
                    216: *
                    217: *     Test the input parameters.
                    218: *
                    219:       WANTZ = LSAME( JOBZ, 'V' )
                    220:       UPPER = LSAME( UPLO, 'U' )
                    221: *
                    222:       INFO = 0
                    223:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    224:          INFO = -1
                    225:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    226:          INFO = -2
                    227:       ELSE IF( N.LT.0 ) THEN
                    228:          INFO = -3
                    229:       ELSE IF( KA.LT.0 ) THEN
                    230:          INFO = -4
                    231:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
                    232:          INFO = -5
                    233:       ELSE IF( LDAB.LT.KA+1 ) THEN
                    234:          INFO = -7
                    235:       ELSE IF( LDBB.LT.KB+1 ) THEN
                    236:          INFO = -9
                    237:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    238:          INFO = -12
                    239:       END IF
                    240:       IF( INFO.NE.0 ) THEN
                    241:          CALL XERBLA( 'ZHBGV ', -INFO )
                    242:          RETURN
                    243:       END IF
                    244: *
                    245: *     Quick return if possible
                    246: *
                    247:       IF( N.EQ.0 )
                    248:      $   RETURN
                    249: *
                    250: *     Form a split Cholesky factorization of B.
                    251: *
                    252:       CALL ZPBSTF( UPLO, N, KB, BB, LDBB, INFO )
                    253:       IF( INFO.NE.0 ) THEN
                    254:          INFO = N + INFO
                    255:          RETURN
                    256:       END IF
                    257: *
                    258: *     Transform problem to standard eigenvalue problem.
                    259: *
                    260:       INDE = 1
                    261:       INDWRK = INDE + N
                    262:       CALL ZHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
                    263:      $             WORK, RWORK( INDWRK ), IINFO )
                    264: *
                    265: *     Reduce to tridiagonal form.
                    266: *
                    267:       IF( WANTZ ) THEN
                    268:          VECT = 'U'
                    269:       ELSE
                    270:          VECT = 'N'
                    271:       END IF
                    272:       CALL ZHBTRD( VECT, UPLO, N, KA, AB, LDAB, W, RWORK( INDE ), Z,
                    273:      $             LDZ, WORK, IINFO )
                    274: *
                    275: *     For eigenvalues only, call DSTERF.  For eigenvectors, call ZSTEQR.
                    276: *
                    277:       IF( .NOT.WANTZ ) THEN
                    278:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
                    279:       ELSE
                    280:          CALL ZSTEQR( JOBZ, N, W, RWORK( INDE ), Z, LDZ,
                    281:      $                RWORK( INDWRK ), INFO )
                    282:       END IF
                    283:       RETURN
                    284: *
                    285: *     End of ZHBGV
                    286: *
                    287:       END

CVSweb interface <joel.bertrand@systella.fr>