Annotation of rpl/lapack/lapack/zhbgv.f, revision 1.18

1.13      bertrand    1: *> \brief \b ZHBGV
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZHBGV + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbgv.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbgv.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbgv.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
                     22: *                         LDZ, WORK, RWORK, INFO )
1.15      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBZ, UPLO
                     26: *       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   RWORK( * ), W( * )
                     30: *       COMPLEX*16         AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
                     31: *      $                   Z( LDZ, * )
                     32: *       ..
1.15      bertrand   33: *
1.8       bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> ZHBGV computes all the eigenvalues, and optionally, the eigenvectors
                     41: *> of a complex generalized Hermitian-definite banded eigenproblem, of
                     42: *> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
                     43: *> and banded, and B is also positive definite.
                     44: *> \endverbatim
                     45: *
                     46: *  Arguments:
                     47: *  ==========
                     48: *
                     49: *> \param[in] JOBZ
                     50: *> \verbatim
                     51: *>          JOBZ is CHARACTER*1
                     52: *>          = 'N':  Compute eigenvalues only;
                     53: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     54: *> \endverbatim
                     55: *>
                     56: *> \param[in] UPLO
                     57: *> \verbatim
                     58: *>          UPLO is CHARACTER*1
                     59: *>          = 'U':  Upper triangles of A and B are stored;
                     60: *>          = 'L':  Lower triangles of A and B are stored.
                     61: *> \endverbatim
                     62: *>
                     63: *> \param[in] N
                     64: *> \verbatim
                     65: *>          N is INTEGER
                     66: *>          The order of the matrices A and B.  N >= 0.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] KA
                     70: *> \verbatim
                     71: *>          KA is INTEGER
                     72: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
                     73: *>          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] KB
                     77: *> \verbatim
                     78: *>          KB is INTEGER
                     79: *>          The number of superdiagonals of the matrix B if UPLO = 'U',
                     80: *>          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in,out] AB
                     84: *> \verbatim
                     85: *>          AB is COMPLEX*16 array, dimension (LDAB, N)
                     86: *>          On entry, the upper or lower triangle of the Hermitian band
                     87: *>          matrix A, stored in the first ka+1 rows of the array.  The
                     88: *>          j-th column of A is stored in the j-th column of the array AB
                     89: *>          as follows:
                     90: *>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
                     91: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
                     92: *>
                     93: *>          On exit, the contents of AB are destroyed.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] LDAB
                     97: *> \verbatim
                     98: *>          LDAB is INTEGER
                     99: *>          The leading dimension of the array AB.  LDAB >= KA+1.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in,out] BB
                    103: *> \verbatim
                    104: *>          BB is COMPLEX*16 array, dimension (LDBB, N)
                    105: *>          On entry, the upper or lower triangle of the Hermitian band
                    106: *>          matrix B, stored in the first kb+1 rows of the array.  The
                    107: *>          j-th column of B is stored in the j-th column of the array BB
                    108: *>          as follows:
                    109: *>          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
                    110: *>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
                    111: *>
                    112: *>          On exit, the factor S from the split Cholesky factorization
                    113: *>          B = S**H*S, as returned by ZPBSTF.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] LDBB
                    117: *> \verbatim
                    118: *>          LDBB is INTEGER
                    119: *>          The leading dimension of the array BB.  LDBB >= KB+1.
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[out] W
                    123: *> \verbatim
                    124: *>          W is DOUBLE PRECISION array, dimension (N)
                    125: *>          If INFO = 0, the eigenvalues in ascending order.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[out] Z
                    129: *> \verbatim
                    130: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
                    131: *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                    132: *>          eigenvectors, with the i-th column of Z holding the
                    133: *>          eigenvector associated with W(i). The eigenvectors are
                    134: *>          normalized so that Z**H*B*Z = I.
                    135: *>          If JOBZ = 'N', then Z is not referenced.
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[in] LDZ
                    139: *> \verbatim
                    140: *>          LDZ is INTEGER
                    141: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    142: *>          JOBZ = 'V', LDZ >= N.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[out] WORK
                    146: *> \verbatim
                    147: *>          WORK is COMPLEX*16 array, dimension (N)
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[out] RWORK
                    151: *> \verbatim
                    152: *>          RWORK is DOUBLE PRECISION array, dimension (3*N)
                    153: *> \endverbatim
                    154: *>
                    155: *> \param[out] INFO
                    156: *> \verbatim
                    157: *>          INFO is INTEGER
                    158: *>          = 0:  successful exit
                    159: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    160: *>          > 0:  if INFO = i, and i is:
                    161: *>             <= N:  the algorithm failed to converge:
                    162: *>                    i off-diagonal elements of an intermediate
                    163: *>                    tridiagonal form did not converge to zero;
                    164: *>             > N:   if INFO = N + i, for 1 <= i <= N, then ZPBSTF
                    165: *>                    returned INFO = i: B is not positive definite.
                    166: *>                    The factorization of B could not be completed and
                    167: *>                    no eigenvalues or eigenvectors were computed.
                    168: *> \endverbatim
                    169: *
                    170: *  Authors:
                    171: *  ========
                    172: *
1.15      bertrand  173: *> \author Univ. of Tennessee
                    174: *> \author Univ. of California Berkeley
                    175: *> \author Univ. of Colorado Denver
                    176: *> \author NAG Ltd.
1.8       bertrand  177: *
                    178: *> \ingroup complex16OTHEReigen
                    179: *
                    180: *  =====================================================================
1.1       bertrand  181:       SUBROUTINE ZHBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
                    182:      $                  LDZ, WORK, RWORK, INFO )
                    183: *
1.18    ! bertrand  184: *  -- LAPACK driver routine --
1.1       bertrand  185: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    186: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    187: *
                    188: *     .. Scalar Arguments ..
                    189:       CHARACTER          JOBZ, UPLO
                    190:       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
                    191: *     ..
                    192: *     .. Array Arguments ..
                    193:       DOUBLE PRECISION   RWORK( * ), W( * )
                    194:       COMPLEX*16         AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
                    195:      $                   Z( LDZ, * )
                    196: *     ..
                    197: *
                    198: *  =====================================================================
                    199: *
                    200: *     .. Local Scalars ..
                    201:       LOGICAL            UPPER, WANTZ
                    202:       CHARACTER          VECT
                    203:       INTEGER            IINFO, INDE, INDWRK
                    204: *     ..
                    205: *     .. External Functions ..
                    206:       LOGICAL            LSAME
                    207:       EXTERNAL           LSAME
                    208: *     ..
                    209: *     .. External Subroutines ..
                    210:       EXTERNAL           DSTERF, XERBLA, ZHBGST, ZHBTRD, ZPBSTF, ZSTEQR
                    211: *     ..
                    212: *     .. Executable Statements ..
                    213: *
                    214: *     Test the input parameters.
                    215: *
                    216:       WANTZ = LSAME( JOBZ, 'V' )
                    217:       UPPER = LSAME( UPLO, 'U' )
                    218: *
                    219:       INFO = 0
                    220:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    221:          INFO = -1
                    222:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    223:          INFO = -2
                    224:       ELSE IF( N.LT.0 ) THEN
                    225:          INFO = -3
                    226:       ELSE IF( KA.LT.0 ) THEN
                    227:          INFO = -4
                    228:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
                    229:          INFO = -5
                    230:       ELSE IF( LDAB.LT.KA+1 ) THEN
                    231:          INFO = -7
                    232:       ELSE IF( LDBB.LT.KB+1 ) THEN
                    233:          INFO = -9
                    234:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    235:          INFO = -12
                    236:       END IF
                    237:       IF( INFO.NE.0 ) THEN
                    238:          CALL XERBLA( 'ZHBGV ', -INFO )
                    239:          RETURN
                    240:       END IF
                    241: *
                    242: *     Quick return if possible
                    243: *
                    244:       IF( N.EQ.0 )
                    245:      $   RETURN
                    246: *
                    247: *     Form a split Cholesky factorization of B.
                    248: *
                    249:       CALL ZPBSTF( UPLO, N, KB, BB, LDBB, INFO )
                    250:       IF( INFO.NE.0 ) THEN
                    251:          INFO = N + INFO
                    252:          RETURN
                    253:       END IF
                    254: *
                    255: *     Transform problem to standard eigenvalue problem.
                    256: *
                    257:       INDE = 1
                    258:       INDWRK = INDE + N
                    259:       CALL ZHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
                    260:      $             WORK, RWORK( INDWRK ), IINFO )
                    261: *
                    262: *     Reduce to tridiagonal form.
                    263: *
                    264:       IF( WANTZ ) THEN
                    265:          VECT = 'U'
                    266:       ELSE
                    267:          VECT = 'N'
                    268:       END IF
                    269:       CALL ZHBTRD( VECT, UPLO, N, KA, AB, LDAB, W, RWORK( INDE ), Z,
                    270:      $             LDZ, WORK, IINFO )
                    271: *
                    272: *     For eigenvalues only, call DSTERF.  For eigenvectors, call ZSTEQR.
                    273: *
                    274:       IF( .NOT.WANTZ ) THEN
                    275:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
                    276:       ELSE
                    277:          CALL ZSTEQR( JOBZ, N, W, RWORK( INDE ), Z, LDZ,
                    278:      $                RWORK( INDWRK ), INFO )
                    279:       END IF
                    280:       RETURN
                    281: *
                    282: *     End of ZHBGV
                    283: *
                    284:       END

CVSweb interface <joel.bertrand@systella.fr>