Annotation of rpl/lapack/lapack/zhbgv.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZHBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
        !             2:      $                  LDZ, WORK, RWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          JOBZ, UPLO
        !            11:       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       DOUBLE PRECISION   RWORK( * ), W( * )
        !            15:       COMPLEX*16         AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
        !            16:      $                   Z( LDZ, * )
        !            17: *     ..
        !            18: *
        !            19: *  Purpose
        !            20: *  =======
        !            21: *
        !            22: *  ZHBGV computes all the eigenvalues, and optionally, the eigenvectors
        !            23: *  of a complex generalized Hermitian-definite banded eigenproblem, of
        !            24: *  the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
        !            25: *  and banded, and B is also positive definite.
        !            26: *
        !            27: *  Arguments
        !            28: *  =========
        !            29: *
        !            30: *  JOBZ    (input) CHARACTER*1
        !            31: *          = 'N':  Compute eigenvalues only;
        !            32: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            33: *
        !            34: *  UPLO    (input) CHARACTER*1
        !            35: *          = 'U':  Upper triangles of A and B are stored;
        !            36: *          = 'L':  Lower triangles of A and B are stored.
        !            37: *
        !            38: *  N       (input) INTEGER
        !            39: *          The order of the matrices A and B.  N >= 0.
        !            40: *
        !            41: *  KA      (input) INTEGER
        !            42: *          The number of superdiagonals of the matrix A if UPLO = 'U',
        !            43: *          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
        !            44: *
        !            45: *  KB      (input) INTEGER
        !            46: *          The number of superdiagonals of the matrix B if UPLO = 'U',
        !            47: *          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
        !            48: *
        !            49: *  AB      (input/output) COMPLEX*16 array, dimension (LDAB, N)
        !            50: *          On entry, the upper or lower triangle of the Hermitian band
        !            51: *          matrix A, stored in the first ka+1 rows of the array.  The
        !            52: *          j-th column of A is stored in the j-th column of the array AB
        !            53: *          as follows:
        !            54: *          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
        !            55: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
        !            56: *
        !            57: *          On exit, the contents of AB are destroyed.
        !            58: *
        !            59: *  LDAB    (input) INTEGER
        !            60: *          The leading dimension of the array AB.  LDAB >= KA+1.
        !            61: *
        !            62: *  BB      (input/output) COMPLEX*16 array, dimension (LDBB, N)
        !            63: *          On entry, the upper or lower triangle of the Hermitian band
        !            64: *          matrix B, stored in the first kb+1 rows of the array.  The
        !            65: *          j-th column of B is stored in the j-th column of the array BB
        !            66: *          as follows:
        !            67: *          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
        !            68: *          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
        !            69: *
        !            70: *          On exit, the factor S from the split Cholesky factorization
        !            71: *          B = S**H*S, as returned by ZPBSTF.
        !            72: *
        !            73: *  LDBB    (input) INTEGER
        !            74: *          The leading dimension of the array BB.  LDBB >= KB+1.
        !            75: *
        !            76: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !            77: *          If INFO = 0, the eigenvalues in ascending order.
        !            78: *
        !            79: *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
        !            80: *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
        !            81: *          eigenvectors, with the i-th column of Z holding the
        !            82: *          eigenvector associated with W(i). The eigenvectors are
        !            83: *          normalized so that Z**H*B*Z = I.
        !            84: *          If JOBZ = 'N', then Z is not referenced.
        !            85: *
        !            86: *  LDZ     (input) INTEGER
        !            87: *          The leading dimension of the array Z.  LDZ >= 1, and if
        !            88: *          JOBZ = 'V', LDZ >= N.
        !            89: *
        !            90: *  WORK    (workspace) COMPLEX*16 array, dimension (N)
        !            91: *
        !            92: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (3*N)
        !            93: *
        !            94: *  INFO    (output) INTEGER
        !            95: *          = 0:  successful exit
        !            96: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !            97: *          > 0:  if INFO = i, and i is:
        !            98: *             <= N:  the algorithm failed to converge:
        !            99: *                    i off-diagonal elements of an intermediate
        !           100: *                    tridiagonal form did not converge to zero;
        !           101: *             > N:   if INFO = N + i, for 1 <= i <= N, then ZPBSTF
        !           102: *                    returned INFO = i: B is not positive definite.
        !           103: *                    The factorization of B could not be completed and
        !           104: *                    no eigenvalues or eigenvectors were computed.
        !           105: *
        !           106: *  =====================================================================
        !           107: *
        !           108: *     .. Local Scalars ..
        !           109:       LOGICAL            UPPER, WANTZ
        !           110:       CHARACTER          VECT
        !           111:       INTEGER            IINFO, INDE, INDWRK
        !           112: *     ..
        !           113: *     .. External Functions ..
        !           114:       LOGICAL            LSAME
        !           115:       EXTERNAL           LSAME
        !           116: *     ..
        !           117: *     .. External Subroutines ..
        !           118:       EXTERNAL           DSTERF, XERBLA, ZHBGST, ZHBTRD, ZPBSTF, ZSTEQR
        !           119: *     ..
        !           120: *     .. Executable Statements ..
        !           121: *
        !           122: *     Test the input parameters.
        !           123: *
        !           124:       WANTZ = LSAME( JOBZ, 'V' )
        !           125:       UPPER = LSAME( UPLO, 'U' )
        !           126: *
        !           127:       INFO = 0
        !           128:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           129:          INFO = -1
        !           130:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
        !           131:          INFO = -2
        !           132:       ELSE IF( N.LT.0 ) THEN
        !           133:          INFO = -3
        !           134:       ELSE IF( KA.LT.0 ) THEN
        !           135:          INFO = -4
        !           136:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
        !           137:          INFO = -5
        !           138:       ELSE IF( LDAB.LT.KA+1 ) THEN
        !           139:          INFO = -7
        !           140:       ELSE IF( LDBB.LT.KB+1 ) THEN
        !           141:          INFO = -9
        !           142:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           143:          INFO = -12
        !           144:       END IF
        !           145:       IF( INFO.NE.0 ) THEN
        !           146:          CALL XERBLA( 'ZHBGV ', -INFO )
        !           147:          RETURN
        !           148:       END IF
        !           149: *
        !           150: *     Quick return if possible
        !           151: *
        !           152:       IF( N.EQ.0 )
        !           153:      $   RETURN
        !           154: *
        !           155: *     Form a split Cholesky factorization of B.
        !           156: *
        !           157:       CALL ZPBSTF( UPLO, N, KB, BB, LDBB, INFO )
        !           158:       IF( INFO.NE.0 ) THEN
        !           159:          INFO = N + INFO
        !           160:          RETURN
        !           161:       END IF
        !           162: *
        !           163: *     Transform problem to standard eigenvalue problem.
        !           164: *
        !           165:       INDE = 1
        !           166:       INDWRK = INDE + N
        !           167:       CALL ZHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
        !           168:      $             WORK, RWORK( INDWRK ), IINFO )
        !           169: *
        !           170: *     Reduce to tridiagonal form.
        !           171: *
        !           172:       IF( WANTZ ) THEN
        !           173:          VECT = 'U'
        !           174:       ELSE
        !           175:          VECT = 'N'
        !           176:       END IF
        !           177:       CALL ZHBTRD( VECT, UPLO, N, KA, AB, LDAB, W, RWORK( INDE ), Z,
        !           178:      $             LDZ, WORK, IINFO )
        !           179: *
        !           180: *     For eigenvalues only, call DSTERF.  For eigenvectors, call ZSTEQR.
        !           181: *
        !           182:       IF( .NOT.WANTZ ) THEN
        !           183:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
        !           184:       ELSE
        !           185:          CALL ZSTEQR( JOBZ, N, W, RWORK( INDE ), Z, LDZ,
        !           186:      $                RWORK( INDWRK ), INFO )
        !           187:       END IF
        !           188:       RETURN
        !           189: *
        !           190: *     End of ZHBGV
        !           191: *
        !           192:       END

CVSweb interface <joel.bertrand@systella.fr>