Annotation of rpl/lapack/lapack/zhbevx_2stage.f, revision 1.3

1.1       bertrand    1: *> \brief <b> ZHBEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
                      2: *
                      3: *  @precisions fortran z -> s d c
                      4: *
                      5: *  =========== DOCUMENTATION ===========
                      6: *
                      7: * Online html documentation available at
                      8: *            http://www.netlib.org/lapack/explore-html/
                      9: *
                     10: *> \htmlonly
                     11: *> Download ZHBEVX_2STAGE + dependencies
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbevx_2stage.f">
                     13: *> [TGZ]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbevx_2stage.f">
                     15: *> [ZIP]</a>
                     16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbevx_2stage.f">
                     17: *> [TXT]</a>
                     18: *> \endhtmlonly
                     19: *
                     20: *  Definition:
                     21: *  ===========
                     22: *
                     23: *       SUBROUTINE ZHBEVX_2STAGE( JOBZ, RANGE, UPLO, N, KD, AB, LDAB,
                     24: *                                 Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W,
                     25: *                                 Z, LDZ, WORK, LWORK, RWORK, IWORK, 
                     26: *                                 IFAIL, INFO )
                     27: *
                     28: *       IMPLICIT NONE
                     29: *
                     30: *       .. Scalar Arguments ..
                     31: *       CHARACTER          JOBZ, RANGE, UPLO
                     32: *       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N, LWORK
                     33: *       DOUBLE PRECISION   ABSTOL, VL, VU
                     34: *       ..
                     35: *       .. Array Arguments ..
                     36: *       INTEGER            IFAIL( * ), IWORK( * )
                     37: *       DOUBLE PRECISION   RWORK( * ), W( * )
                     38: *       COMPLEX*16         AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
                     39: *      $                   Z( LDZ, * )
                     40: *       ..
                     41: *
                     42: *
                     43: *> \par Purpose:
                     44: *  =============
                     45: *>
                     46: *> \verbatim
                     47: *>
                     48: *> ZHBEVX_2STAGE computes selected eigenvalues and, optionally, eigenvectors
                     49: *> of a complex Hermitian band matrix A using the 2stage technique for
                     50: *> the reduction to tridiagonal.  Eigenvalues and eigenvectors
                     51: *> can be selected by specifying either a range of values or a range of
                     52: *> indices for the desired eigenvalues.
                     53: *> \endverbatim
                     54: *
                     55: *  Arguments:
                     56: *  ==========
                     57: *
                     58: *> \param[in] JOBZ
                     59: *> \verbatim
                     60: *>          JOBZ is CHARACTER*1
                     61: *>          = 'N':  Compute eigenvalues only;
                     62: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     63: *>                  Not available in this release.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] RANGE
                     67: *> \verbatim
                     68: *>          RANGE is CHARACTER*1
                     69: *>          = 'A': all eigenvalues will be found;
                     70: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     71: *>                 will be found;
                     72: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] UPLO
                     76: *> \verbatim
                     77: *>          UPLO is CHARACTER*1
                     78: *>          = 'U':  Upper triangle of A is stored;
                     79: *>          = 'L':  Lower triangle of A is stored.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] N
                     83: *> \verbatim
                     84: *>          N is INTEGER
                     85: *>          The order of the matrix A.  N >= 0.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in] KD
                     89: *> \verbatim
                     90: *>          KD is INTEGER
                     91: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
                     92: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in,out] AB
                     96: *> \verbatim
                     97: *>          AB is COMPLEX*16 array, dimension (LDAB, N)
                     98: *>          On entry, the upper or lower triangle of the Hermitian band
                     99: *>          matrix A, stored in the first KD+1 rows of the array.  The
                    100: *>          j-th column of A is stored in the j-th column of the array AB
                    101: *>          as follows:
                    102: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                    103: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                    104: *>
                    105: *>          On exit, AB is overwritten by values generated during the
                    106: *>          reduction to tridiagonal form.
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in] LDAB
                    110: *> \verbatim
                    111: *>          LDAB is INTEGER
                    112: *>          The leading dimension of the array AB.  LDAB >= KD + 1.
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[out] Q
                    116: *> \verbatim
                    117: *>          Q is COMPLEX*16 array, dimension (LDQ, N)
                    118: *>          If JOBZ = 'V', the N-by-N unitary matrix used in the
                    119: *>                          reduction to tridiagonal form.
                    120: *>          If JOBZ = 'N', the array Q is not referenced.
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[in] LDQ
                    124: *> \verbatim
                    125: *>          LDQ is INTEGER
                    126: *>          The leading dimension of the array Q.  If JOBZ = 'V', then
                    127: *>          LDQ >= max(1,N).
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[in] VL
                    131: *> \verbatim
                    132: *>          VL is DOUBLE PRECISION
                    133: *>          If RANGE='V', the lower bound of the interval to
                    134: *>          be searched for eigenvalues. VL < VU.
                    135: *>          Not referenced if RANGE = 'A' or 'I'.
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[in] VU
                    139: *> \verbatim
                    140: *>          VU is DOUBLE PRECISION
                    141: *>          If RANGE='V', the upper bound of the interval to
                    142: *>          be searched for eigenvalues. VL < VU.
                    143: *>          Not referenced if RANGE = 'A' or 'I'.
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[in] IL
                    147: *> \verbatim
                    148: *>          IL is INTEGER
                    149: *>          If RANGE='I', the index of the
                    150: *>          smallest eigenvalue to be returned.
                    151: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    152: *>          Not referenced if RANGE = 'A' or 'V'.
                    153: *> \endverbatim
                    154: *>
                    155: *> \param[in] IU
                    156: *> \verbatim
                    157: *>          IU is INTEGER
                    158: *>          If RANGE='I', the index of the
                    159: *>          largest eigenvalue to be returned.
                    160: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    161: *>          Not referenced if RANGE = 'A' or 'V'.
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[in] ABSTOL
                    165: *> \verbatim
                    166: *>          ABSTOL is DOUBLE PRECISION
                    167: *>          The absolute error tolerance for the eigenvalues.
                    168: *>          An approximate eigenvalue is accepted as converged
                    169: *>          when it is determined to lie in an interval [a,b]
                    170: *>          of width less than or equal to
                    171: *>
                    172: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    173: *>
                    174: *>          where EPS is the machine precision.  If ABSTOL is less than
                    175: *>          or equal to zero, then  EPS*|T|  will be used in its place,
                    176: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
                    177: *>          by reducing AB to tridiagonal form.
                    178: *>
                    179: *>          Eigenvalues will be computed most accurately when ABSTOL is
                    180: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    181: *>          If this routine returns with INFO>0, indicating that some
                    182: *>          eigenvectors did not converge, try setting ABSTOL to
                    183: *>          2*DLAMCH('S').
                    184: *>
                    185: *>          See "Computing Small Singular Values of Bidiagonal Matrices
                    186: *>          with Guaranteed High Relative Accuracy," by Demmel and
                    187: *>          Kahan, LAPACK Working Note #3.
                    188: *> \endverbatim
                    189: *>
                    190: *> \param[out] M
                    191: *> \verbatim
                    192: *>          M is INTEGER
                    193: *>          The total number of eigenvalues found.  0 <= M <= N.
                    194: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    195: *> \endverbatim
                    196: *>
                    197: *> \param[out] W
                    198: *> \verbatim
                    199: *>          W is DOUBLE PRECISION array, dimension (N)
                    200: *>          The first M elements contain the selected eigenvalues in
                    201: *>          ascending order.
                    202: *> \endverbatim
                    203: *>
                    204: *> \param[out] Z
                    205: *> \verbatim
                    206: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
                    207: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    208: *>          contain the orthonormal eigenvectors of the matrix A
                    209: *>          corresponding to the selected eigenvalues, with the i-th
                    210: *>          column of Z holding the eigenvector associated with W(i).
                    211: *>          If an eigenvector fails to converge, then that column of Z
                    212: *>          contains the latest approximation to the eigenvector, and the
                    213: *>          index of the eigenvector is returned in IFAIL.
                    214: *>          If JOBZ = 'N', then Z is not referenced.
                    215: *>          Note: the user must ensure that at least max(1,M) columns are
                    216: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
                    217: *>          is not known in advance and an upper bound must be used.
                    218: *> \endverbatim
                    219: *>
                    220: *> \param[in] LDZ
                    221: *> \verbatim
                    222: *>          LDZ is INTEGER
                    223: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    224: *>          JOBZ = 'V', LDZ >= max(1,N).
                    225: *> \endverbatim
                    226: *>
                    227: *> \param[out] WORK
                    228: *> \verbatim
                    229: *>          WORK is COMPLEX*16 array, dimension (LWORK)
                    230: *> \endverbatim
                    231: *>
                    232: *> \param[in] LWORK
                    233: *> \verbatim
                    234: *>          LWORK is INTEGER
                    235: *>          The length of the array WORK. LWORK >= 1, when N <= 1;
                    236: *>          otherwise  
                    237: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
                    238: *>                                   LWORK = MAX(1, dimension) where
                    239: *>                                   dimension = (2KD+1)*N + KD*NTHREADS
                    240: *>                                   where KD is the size of the band.
                    241: *>                                   NTHREADS is the number of threads used when
                    242: *>                                   openMP compilation is enabled, otherwise =1.
                    243: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
                    244: *>
                    245: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    246: *>          only calculates the optimal sizes of the WORK, RWORK and
                    247: *>          IWORK arrays, returns these values as the first entries of
                    248: *>          the WORK, RWORK and IWORK arrays, and no error message
                    249: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    250: *> \endverbatim
                    251: *>
                    252: *> \param[out] RWORK
                    253: *> \verbatim
                    254: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
                    255: *> \endverbatim
                    256: *>
                    257: *> \param[out] IWORK
                    258: *> \verbatim
                    259: *>          IWORK is INTEGER array, dimension (5*N)
                    260: *> \endverbatim
                    261: *>
                    262: *> \param[out] IFAIL
                    263: *> \verbatim
                    264: *>          IFAIL is INTEGER array, dimension (N)
                    265: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    266: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    267: *>          indices of the eigenvectors that failed to converge.
                    268: *>          If JOBZ = 'N', then IFAIL is not referenced.
                    269: *> \endverbatim
                    270: *>
                    271: *> \param[out] INFO
                    272: *> \verbatim
                    273: *>          INFO is INTEGER
                    274: *>          = 0:  successful exit
                    275: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    276: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
                    277: *>                Their indices are stored in array IFAIL.
                    278: *> \endverbatim
                    279: *
                    280: *  Authors:
                    281: *  ========
                    282: *
                    283: *> \author Univ. of Tennessee
                    284: *> \author Univ. of California Berkeley
                    285: *> \author Univ. of Colorado Denver
                    286: *> \author NAG Ltd.
                    287: *
                    288: *> \date June 2016
                    289: *
                    290: *> \ingroup complex16OTHEReigen
                    291: *
                    292: *> \par Further Details:
                    293: *  =====================
                    294: *>
                    295: *> \verbatim
                    296: *>
                    297: *>  All details about the 2stage techniques are available in:
                    298: *>
                    299: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
                    300: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
                    301: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
                    302: *>  of 2011 International Conference for High Performance Computing,
                    303: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
                    304: *>  Article 8 , 11 pages.
                    305: *>  http://doi.acm.org/10.1145/2063384.2063394
                    306: *>
                    307: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
                    308: *>  An improved parallel singular value algorithm and its implementation 
                    309: *>  for multicore hardware, In Proceedings of 2013 International Conference
                    310: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
                    311: *>  Denver, Colorado, USA, 2013.
                    312: *>  Article 90, 12 pages.
                    313: *>  http://doi.acm.org/10.1145/2503210.2503292
                    314: *>
                    315: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
                    316: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
                    317: *>  calculations based on fine-grained memory aware tasks.
                    318: *>  International Journal of High Performance Computing Applications.
                    319: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
                    320: *>  http://hpc.sagepub.com/content/28/2/196 
                    321: *>
                    322: *> \endverbatim
                    323: *
                    324: *  =====================================================================
                    325:       SUBROUTINE ZHBEVX_2STAGE( JOBZ, RANGE, UPLO, N, KD, AB, LDAB,
                    326:      $                          Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W,
                    327:      $                          Z, LDZ, WORK, LWORK, RWORK, IWORK, 
                    328:      $                          IFAIL, INFO )
                    329: *
                    330:       IMPLICIT NONE
                    331: *
1.3     ! bertrand  332: *  -- LAPACK driver routine (version 3.8.0) --
1.1       bertrand  333: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    334: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    335: *     June 2016
                    336: *
                    337: *     .. Scalar Arguments ..
                    338:       CHARACTER          JOBZ, RANGE, UPLO
                    339:       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N, LWORK
                    340:       DOUBLE PRECISION   ABSTOL, VL, VU
                    341: *     ..
                    342: *     .. Array Arguments ..
                    343:       INTEGER            IFAIL( * ), IWORK( * )
                    344:       DOUBLE PRECISION   RWORK( * ), W( * )
                    345:       COMPLEX*16         AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
                    346:      $                   Z( LDZ, * )
                    347: *     ..
                    348: *
                    349: *  =====================================================================
                    350: *
                    351: *     .. Parameters ..
                    352:       DOUBLE PRECISION   ZERO, ONE
                    353:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    354:       COMPLEX*16         CZERO, CONE
                    355:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
                    356:      $                   CONE = ( 1.0D0, 0.0D0 ) )
                    357: *     ..
                    358: *     .. Local Scalars ..
                    359:       LOGICAL            ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ,
                    360:      $                   LQUERY
                    361:       CHARACTER          ORDER
                    362:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
                    363:      $                   INDISP, INDIWK, INDRWK, INDWRK, ISCALE, ITMP1,
                    364:      $                   LLWORK, LWMIN, LHTRD, LWTRD, IB, INDHOUS,
                    365:      $                   J, JJ, NSPLIT
                    366:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    367:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    368:       COMPLEX*16         CTMP1
                    369: *     ..
                    370: *     .. External Functions ..
                    371:       LOGICAL            LSAME
1.3     ! bertrand  372:       INTEGER            ILAENV2STAGE
1.1       bertrand  373:       DOUBLE PRECISION   DLAMCH, ZLANHB
1.3     ! bertrand  374:       EXTERNAL           LSAME, DLAMCH, ZLANHB, ILAENV2STAGE
1.1       bertrand  375: *     ..
                    376: *     .. External Subroutines ..
                    377:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZCOPY,
                    378:      $                   ZGEMV, ZLACPY, ZLASCL, ZSTEIN, ZSTEQR,
                    379:      $                   ZSWAP, ZHETRD_HB2ST
                    380: *     ..
                    381: *     .. Intrinsic Functions ..
                    382:       INTRINSIC          DBLE, MAX, MIN, SQRT
                    383: *     ..
                    384: *     .. Executable Statements ..
                    385: *
                    386: *     Test the input parameters.
                    387: *
                    388:       WANTZ = LSAME( JOBZ, 'V' )
                    389:       ALLEIG = LSAME( RANGE, 'A' )
                    390:       VALEIG = LSAME( RANGE, 'V' )
                    391:       INDEIG = LSAME( RANGE, 'I' )
                    392:       LOWER = LSAME( UPLO, 'L' )
                    393:       LQUERY = ( LWORK.EQ.-1 )
                    394: *
                    395:       INFO = 0
                    396:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
                    397:          INFO = -1
                    398:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    399:          INFO = -2
                    400:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    401:          INFO = -3
                    402:       ELSE IF( N.LT.0 ) THEN
                    403:          INFO = -4
                    404:       ELSE IF( KD.LT.0 ) THEN
                    405:          INFO = -5
                    406:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    407:          INFO = -7
                    408:       ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
                    409:          INFO = -9
                    410:       ELSE
                    411:          IF( VALEIG ) THEN
                    412:             IF( N.GT.0 .AND. VU.LE.VL )
                    413:      $         INFO = -11
                    414:          ELSE IF( INDEIG ) THEN
                    415:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    416:                INFO = -12
                    417:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    418:                INFO = -13
                    419:             END IF
                    420:          END IF
                    421:       END IF
                    422:       IF( INFO.EQ.0 ) THEN
                    423:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
                    424:      $      INFO = -18
                    425:       END IF
                    426: *
                    427:       IF( INFO.EQ.0 ) THEN
                    428:          IF( N.LE.1 ) THEN
                    429:             LWMIN = 1
                    430:             WORK( 1 ) = LWMIN
                    431:          ELSE
1.3     ! bertrand  432:             IB    = ILAENV2STAGE( 2, 'ZHETRD_HB2ST', JOBZ,
        !           433:      $                            N, KD, -1, -1 )
        !           434:             LHTRD = ILAENV2STAGE( 3, 'ZHETRD_HB2ST', JOBZ,
        !           435:      $                            N, KD, IB, -1 )
        !           436:             LWTRD = ILAENV2STAGE( 4, 'ZHETRD_HB2ST', JOBZ,
        !           437:      $                            N, KD, IB, -1 )
1.1       bertrand  438:             LWMIN = LHTRD + LWTRD
                    439:             WORK( 1 )  = LWMIN
                    440:          ENDIF
                    441: *
                    442:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY )
                    443:      $      INFO = -20
                    444:       END IF
                    445: *
                    446:       IF( INFO.NE.0 ) THEN
                    447:          CALL XERBLA( 'ZHBEVX_2STAGE', -INFO )
                    448:          RETURN
                    449:       ELSE IF( LQUERY ) THEN
                    450:          RETURN
                    451:       END IF
                    452: *
                    453: *     Quick return if possible
                    454: *
                    455:       M = 0
                    456:       IF( N.EQ.0 )
                    457:      $   RETURN
                    458: *
                    459:       IF( N.EQ.1 ) THEN
                    460:          M = 1
                    461:          IF( LOWER ) THEN
                    462:             CTMP1 = AB( 1, 1 )
                    463:          ELSE
                    464:             CTMP1 = AB( KD+1, 1 )
                    465:          END IF
                    466:          TMP1 = DBLE( CTMP1 )
                    467:          IF( VALEIG ) THEN
                    468:             IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
                    469:      $         M = 0
                    470:          END IF
                    471:          IF( M.EQ.1 ) THEN
                    472:             W( 1 ) = DBLE( CTMP1 )
                    473:             IF( WANTZ )
                    474:      $         Z( 1, 1 ) = CONE
                    475:          END IF
                    476:          RETURN
                    477:       END IF
                    478: *
                    479: *     Get machine constants.
                    480: *
                    481:       SAFMIN = DLAMCH( 'Safe minimum' )
                    482:       EPS    = DLAMCH( 'Precision' )
                    483:       SMLNUM = SAFMIN / EPS
                    484:       BIGNUM = ONE / SMLNUM
                    485:       RMIN   = SQRT( SMLNUM )
                    486:       RMAX   = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    487: *
                    488: *     Scale matrix to allowable range, if necessary.
                    489: *
                    490:       ISCALE = 0
                    491:       ABSTLL = ABSTOL
                    492:       IF( VALEIG ) THEN
                    493:          VLL = VL
                    494:          VUU = VU
                    495:       ELSE
                    496:          VLL = ZERO
                    497:          VUU = ZERO
                    498:       END IF
                    499:       ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
                    500:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    501:          ISCALE = 1
                    502:          SIGMA = RMIN / ANRM
                    503:       ELSE IF( ANRM.GT.RMAX ) THEN
                    504:          ISCALE = 1
                    505:          SIGMA = RMAX / ANRM
                    506:       END IF
                    507:       IF( ISCALE.EQ.1 ) THEN
                    508:          IF( LOWER ) THEN
                    509:             CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    510:          ELSE
                    511:             CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    512:          END IF
                    513:          IF( ABSTOL.GT.0 )
                    514:      $      ABSTLL = ABSTOL*SIGMA
                    515:          IF( VALEIG ) THEN
                    516:             VLL = VL*SIGMA
                    517:             VUU = VU*SIGMA
                    518:          END IF
                    519:       END IF
                    520: *
                    521: *     Call ZHBTRD_HB2ST to reduce Hermitian band matrix to tridiagonal form.
                    522: *
                    523:       INDD = 1
                    524:       INDE = INDD + N
                    525:       INDRWK = INDE + N
                    526: *
                    527:       INDHOUS = 1
                    528:       INDWRK  = INDHOUS + LHTRD
                    529:       LLWORK  = LWORK - INDWRK + 1
                    530: *
                    531:       CALL ZHETRD_HB2ST( 'N', JOBZ, UPLO, N, KD, AB, LDAB,
                    532:      $                    RWORK( INDD ), RWORK( INDE ), WORK( INDHOUS ),
                    533:      $                    LHTRD, WORK( INDWRK ), LLWORK, IINFO )
                    534: *
                    535: *     If all eigenvalues are desired and ABSTOL is less than or equal
                    536: *     to zero, then call DSTERF or ZSTEQR.  If this fails for some
                    537: *     eigenvalue, then try DSTEBZ.
                    538: *
                    539:       TEST = .FALSE.
                    540:       IF (INDEIG) THEN
                    541:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
                    542:             TEST = .TRUE.
                    543:          END IF
                    544:       END IF
                    545:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
                    546:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
                    547:          INDEE = INDRWK + 2*N
                    548:          IF( .NOT.WANTZ ) THEN
                    549:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    550:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
                    551:          ELSE
                    552:             CALL ZLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
                    553:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    554:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
                    555:      $                   RWORK( INDRWK ), INFO )
                    556:             IF( INFO.EQ.0 ) THEN
                    557:                DO 10 I = 1, N
                    558:                   IFAIL( I ) = 0
                    559:    10          CONTINUE
                    560:             END IF
                    561:          END IF
                    562:          IF( INFO.EQ.0 ) THEN
                    563:             M = N
                    564:             GO TO 30
                    565:          END IF
                    566:          INFO = 0
                    567:       END IF
                    568: *
                    569: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
                    570: *
                    571:       IF( WANTZ ) THEN
                    572:          ORDER = 'B'
                    573:       ELSE
                    574:          ORDER = 'E'
                    575:       END IF
                    576:       INDIBL = 1
                    577:       INDISP = INDIBL + N
                    578:       INDIWK = INDISP + N
                    579:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    580:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
                    581:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
                    582:      $             IWORK( INDIWK ), INFO )
                    583: *
                    584:       IF( WANTZ ) THEN
                    585:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
                    586:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    587:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
                    588: *
                    589: *        Apply unitary matrix used in reduction to tridiagonal
                    590: *        form to eigenvectors returned by ZSTEIN.
                    591: *
                    592:          DO 20 J = 1, M
                    593:             CALL ZCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
                    594:             CALL ZGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
                    595:      $                  Z( 1, J ), 1 )
                    596:    20    CONTINUE
                    597:       END IF
                    598: *
                    599: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    600: *
                    601:    30 CONTINUE
                    602:       IF( ISCALE.EQ.1 ) THEN
                    603:          IF( INFO.EQ.0 ) THEN
                    604:             IMAX = M
                    605:          ELSE
                    606:             IMAX = INFO - 1
                    607:          END IF
                    608:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    609:       END IF
                    610: *
                    611: *     If eigenvalues are not in order, then sort them, along with
                    612: *     eigenvectors.
                    613: *
                    614:       IF( WANTZ ) THEN
                    615:          DO 50 J = 1, M - 1
                    616:             I = 0
                    617:             TMP1 = W( J )
                    618:             DO 40 JJ = J + 1, M
                    619:                IF( W( JJ ).LT.TMP1 ) THEN
                    620:                   I = JJ
                    621:                   TMP1 = W( JJ )
                    622:                END IF
                    623:    40       CONTINUE
                    624: *
                    625:             IF( I.NE.0 ) THEN
                    626:                ITMP1 = IWORK( INDIBL+I-1 )
                    627:                W( I ) = W( J )
                    628:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    629:                W( J ) = TMP1
                    630:                IWORK( INDIBL+J-1 ) = ITMP1
                    631:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    632:                IF( INFO.NE.0 ) THEN
                    633:                   ITMP1 = IFAIL( I )
                    634:                   IFAIL( I ) = IFAIL( J )
                    635:                   IFAIL( J ) = ITMP1
                    636:                END IF
                    637:             END IF
                    638:    50    CONTINUE
                    639:       END IF
                    640: *
                    641: *     Set WORK(1) to optimal workspace size.
                    642: *
                    643:       WORK( 1 ) = LWMIN
                    644: *
                    645:       RETURN
                    646: *
                    647: *     End of ZHBEVX_2STAGE
                    648: *
                    649:       END

CVSweb interface <joel.bertrand@systella.fr>