File:  [local] / rpl / lapack / lapack / zhbevx.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:47 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief <b> ZHBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZHBEVX + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbevx.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbevx.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbevx.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
   22: *                          VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
   23: *                          IWORK, IFAIL, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
   28: *       DOUBLE PRECISION   ABSTOL, VL, VU
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IFAIL( * ), IWORK( * )
   32: *       DOUBLE PRECISION   RWORK( * ), W( * )
   33: *       COMPLEX*16         AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
   34: *      $                   Z( LDZ, * )
   35: *       ..
   36: *  
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> ZHBEVX computes selected eigenvalues and, optionally, eigenvectors
   44: *> of a complex Hermitian band matrix A.  Eigenvalues and eigenvectors
   45: *> can be selected by specifying either a range of values or a range of
   46: *> indices for the desired eigenvalues.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] JOBZ
   53: *> \verbatim
   54: *>          JOBZ is CHARACTER*1
   55: *>          = 'N':  Compute eigenvalues only;
   56: *>          = 'V':  Compute eigenvalues and eigenvectors.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] RANGE
   60: *> \verbatim
   61: *>          RANGE is CHARACTER*1
   62: *>          = 'A': all eigenvalues will be found;
   63: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
   64: *>                 will be found;
   65: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] UPLO
   69: *> \verbatim
   70: *>          UPLO is CHARACTER*1
   71: *>          = 'U':  Upper triangle of A is stored;
   72: *>          = 'L':  Lower triangle of A is stored.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] N
   76: *> \verbatim
   77: *>          N is INTEGER
   78: *>          The order of the matrix A.  N >= 0.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] KD
   82: *> \verbatim
   83: *>          KD is INTEGER
   84: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
   85: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   86: *> \endverbatim
   87: *>
   88: *> \param[in,out] AB
   89: *> \verbatim
   90: *>          AB is COMPLEX*16 array, dimension (LDAB, N)
   91: *>          On entry, the upper or lower triangle of the Hermitian band
   92: *>          matrix A, stored in the first KD+1 rows of the array.  The
   93: *>          j-th column of A is stored in the j-th column of the array AB
   94: *>          as follows:
   95: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   96: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   97: *>
   98: *>          On exit, AB is overwritten by values generated during the
   99: *>          reduction to tridiagonal form.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDAB
  103: *> \verbatim
  104: *>          LDAB is INTEGER
  105: *>          The leading dimension of the array AB.  LDAB >= KD + 1.
  106: *> \endverbatim
  107: *>
  108: *> \param[out] Q
  109: *> \verbatim
  110: *>          Q is COMPLEX*16 array, dimension (LDQ, N)
  111: *>          If JOBZ = 'V', the N-by-N unitary matrix used in the
  112: *>                          reduction to tridiagonal form.
  113: *>          If JOBZ = 'N', the array Q is not referenced.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDQ
  117: *> \verbatim
  118: *>          LDQ is INTEGER
  119: *>          The leading dimension of the array Q.  If JOBZ = 'V', then
  120: *>          LDQ >= max(1,N).
  121: *> \endverbatim
  122: *>
  123: *> \param[in] VL
  124: *> \verbatim
  125: *>          VL is DOUBLE PRECISION
  126: *> \endverbatim
  127: *>
  128: *> \param[in] VU
  129: *> \verbatim
  130: *>          VU is DOUBLE PRECISION
  131: *>          If RANGE='V', the lower and upper bounds of the interval to
  132: *>          be searched for eigenvalues. VL < VU.
  133: *>          Not referenced if RANGE = 'A' or 'I'.
  134: *> \endverbatim
  135: *>
  136: *> \param[in] IL
  137: *> \verbatim
  138: *>          IL is INTEGER
  139: *> \endverbatim
  140: *>
  141: *> \param[in] IU
  142: *> \verbatim
  143: *>          IU is INTEGER
  144: *>          If RANGE='I', the indices (in ascending order) of the
  145: *>          smallest and largest eigenvalues to be returned.
  146: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  147: *>          Not referenced if RANGE = 'A' or 'V'.
  148: *> \endverbatim
  149: *>
  150: *> \param[in] ABSTOL
  151: *> \verbatim
  152: *>          ABSTOL is DOUBLE PRECISION
  153: *>          The absolute error tolerance for the eigenvalues.
  154: *>          An approximate eigenvalue is accepted as converged
  155: *>          when it is determined to lie in an interval [a,b]
  156: *>          of width less than or equal to
  157: *>
  158: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  159: *>
  160: *>          where EPS is the machine precision.  If ABSTOL is less than
  161: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  162: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  163: *>          by reducing AB to tridiagonal form.
  164: *>
  165: *>          Eigenvalues will be computed most accurately when ABSTOL is
  166: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  167: *>          If this routine returns with INFO>0, indicating that some
  168: *>          eigenvectors did not converge, try setting ABSTOL to
  169: *>          2*DLAMCH('S').
  170: *>
  171: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  172: *>          with Guaranteed High Relative Accuracy," by Demmel and
  173: *>          Kahan, LAPACK Working Note #3.
  174: *> \endverbatim
  175: *>
  176: *> \param[out] M
  177: *> \verbatim
  178: *>          M is INTEGER
  179: *>          The total number of eigenvalues found.  0 <= M <= N.
  180: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  181: *> \endverbatim
  182: *>
  183: *> \param[out] W
  184: *> \verbatim
  185: *>          W is DOUBLE PRECISION array, dimension (N)
  186: *>          The first M elements contain the selected eigenvalues in
  187: *>          ascending order.
  188: *> \endverbatim
  189: *>
  190: *> \param[out] Z
  191: *> \verbatim
  192: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
  193: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  194: *>          contain the orthonormal eigenvectors of the matrix A
  195: *>          corresponding to the selected eigenvalues, with the i-th
  196: *>          column of Z holding the eigenvector associated with W(i).
  197: *>          If an eigenvector fails to converge, then that column of Z
  198: *>          contains the latest approximation to the eigenvector, and the
  199: *>          index of the eigenvector is returned in IFAIL.
  200: *>          If JOBZ = 'N', then Z is not referenced.
  201: *>          Note: the user must ensure that at least max(1,M) columns are
  202: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  203: *>          is not known in advance and an upper bound must be used.
  204: *> \endverbatim
  205: *>
  206: *> \param[in] LDZ
  207: *> \verbatim
  208: *>          LDZ is INTEGER
  209: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  210: *>          JOBZ = 'V', LDZ >= max(1,N).
  211: *> \endverbatim
  212: *>
  213: *> \param[out] WORK
  214: *> \verbatim
  215: *>          WORK is COMPLEX*16 array, dimension (N)
  216: *> \endverbatim
  217: *>
  218: *> \param[out] RWORK
  219: *> \verbatim
  220: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
  221: *> \endverbatim
  222: *>
  223: *> \param[out] IWORK
  224: *> \verbatim
  225: *>          IWORK is INTEGER array, dimension (5*N)
  226: *> \endverbatim
  227: *>
  228: *> \param[out] IFAIL
  229: *> \verbatim
  230: *>          IFAIL is INTEGER array, dimension (N)
  231: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
  232: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  233: *>          indices of the eigenvectors that failed to converge.
  234: *>          If JOBZ = 'N', then IFAIL is not referenced.
  235: *> \endverbatim
  236: *>
  237: *> \param[out] INFO
  238: *> \verbatim
  239: *>          INFO is INTEGER
  240: *>          = 0:  successful exit
  241: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  242: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
  243: *>                Their indices are stored in array IFAIL.
  244: *> \endverbatim
  245: *
  246: *  Authors:
  247: *  ========
  248: *
  249: *> \author Univ. of Tennessee 
  250: *> \author Univ. of California Berkeley 
  251: *> \author Univ. of Colorado Denver 
  252: *> \author NAG Ltd. 
  253: *
  254: *> \date November 2011
  255: *
  256: *> \ingroup complex16OTHEReigen
  257: *
  258: *  =====================================================================
  259:       SUBROUTINE ZHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
  260:      $                   VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
  261:      $                   IWORK, IFAIL, INFO )
  262: *
  263: *  -- LAPACK driver routine (version 3.4.0) --
  264: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  265: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  266: *     November 2011
  267: *
  268: *     .. Scalar Arguments ..
  269:       CHARACTER          JOBZ, RANGE, UPLO
  270:       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
  271:       DOUBLE PRECISION   ABSTOL, VL, VU
  272: *     ..
  273: *     .. Array Arguments ..
  274:       INTEGER            IFAIL( * ), IWORK( * )
  275:       DOUBLE PRECISION   RWORK( * ), W( * )
  276:       COMPLEX*16         AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
  277:      $                   Z( LDZ, * )
  278: *     ..
  279: *
  280: *  =====================================================================
  281: *
  282: *     .. Parameters ..
  283:       DOUBLE PRECISION   ZERO, ONE
  284:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  285:       COMPLEX*16         CZERO, CONE
  286:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
  287:      $                   CONE = ( 1.0D0, 0.0D0 ) )
  288: *     ..
  289: *     .. Local Scalars ..
  290:       LOGICAL            ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ
  291:       CHARACTER          ORDER
  292:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  293:      $                   INDISP, INDIWK, INDRWK, INDWRK, ISCALE, ITMP1,
  294:      $                   J, JJ, NSPLIT
  295:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  296:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  297:       COMPLEX*16         CTMP1
  298: *     ..
  299: *     .. External Functions ..
  300:       LOGICAL            LSAME
  301:       DOUBLE PRECISION   DLAMCH, ZLANHB
  302:       EXTERNAL           LSAME, DLAMCH, ZLANHB
  303: *     ..
  304: *     .. External Subroutines ..
  305:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZCOPY,
  306:      $                   ZGEMV, ZHBTRD, ZLACPY, ZLASCL, ZSTEIN, ZSTEQR,
  307:      $                   ZSWAP
  308: *     ..
  309: *     .. Intrinsic Functions ..
  310:       INTRINSIC          DBLE, MAX, MIN, SQRT
  311: *     ..
  312: *     .. Executable Statements ..
  313: *
  314: *     Test the input parameters.
  315: *
  316:       WANTZ = LSAME( JOBZ, 'V' )
  317:       ALLEIG = LSAME( RANGE, 'A' )
  318:       VALEIG = LSAME( RANGE, 'V' )
  319:       INDEIG = LSAME( RANGE, 'I' )
  320:       LOWER = LSAME( UPLO, 'L' )
  321: *
  322:       INFO = 0
  323:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  324:          INFO = -1
  325:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  326:          INFO = -2
  327:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  328:          INFO = -3
  329:       ELSE IF( N.LT.0 ) THEN
  330:          INFO = -4
  331:       ELSE IF( KD.LT.0 ) THEN
  332:          INFO = -5
  333:       ELSE IF( LDAB.LT.KD+1 ) THEN
  334:          INFO = -7
  335:       ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
  336:          INFO = -9
  337:       ELSE
  338:          IF( VALEIG ) THEN
  339:             IF( N.GT.0 .AND. VU.LE.VL )
  340:      $         INFO = -11
  341:          ELSE IF( INDEIG ) THEN
  342:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  343:                INFO = -12
  344:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  345:                INFO = -13
  346:             END IF
  347:          END IF
  348:       END IF
  349:       IF( INFO.EQ.0 ) THEN
  350:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  351:      $      INFO = -18
  352:       END IF
  353: *
  354:       IF( INFO.NE.0 ) THEN
  355:          CALL XERBLA( 'ZHBEVX', -INFO )
  356:          RETURN
  357:       END IF
  358: *
  359: *     Quick return if possible
  360: *
  361:       M = 0
  362:       IF( N.EQ.0 )
  363:      $   RETURN
  364: *
  365:       IF( N.EQ.1 ) THEN
  366:          M = 1
  367:          IF( LOWER ) THEN
  368:             CTMP1 = AB( 1, 1 )
  369:          ELSE
  370:             CTMP1 = AB( KD+1, 1 )
  371:          END IF
  372:          TMP1 = DBLE( CTMP1 )
  373:          IF( VALEIG ) THEN
  374:             IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
  375:      $         M = 0
  376:          END IF
  377:          IF( M.EQ.1 ) THEN
  378:             W( 1 ) = CTMP1
  379:             IF( WANTZ )
  380:      $         Z( 1, 1 ) = CONE
  381:          END IF
  382:          RETURN
  383:       END IF
  384: *
  385: *     Get machine constants.
  386: *
  387:       SAFMIN = DLAMCH( 'Safe minimum' )
  388:       EPS = DLAMCH( 'Precision' )
  389:       SMLNUM = SAFMIN / EPS
  390:       BIGNUM = ONE / SMLNUM
  391:       RMIN = SQRT( SMLNUM )
  392:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  393: *
  394: *     Scale matrix to allowable range, if necessary.
  395: *
  396:       ISCALE = 0
  397:       ABSTLL = ABSTOL
  398:       IF( VALEIG ) THEN
  399:          VLL = VL
  400:          VUU = VU
  401:       ELSE
  402:          VLL = ZERO
  403:          VUU = ZERO
  404:       END IF
  405:       ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
  406:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  407:          ISCALE = 1
  408:          SIGMA = RMIN / ANRM
  409:       ELSE IF( ANRM.GT.RMAX ) THEN
  410:          ISCALE = 1
  411:          SIGMA = RMAX / ANRM
  412:       END IF
  413:       IF( ISCALE.EQ.1 ) THEN
  414:          IF( LOWER ) THEN
  415:             CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  416:          ELSE
  417:             CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  418:          END IF
  419:          IF( ABSTOL.GT.0 )
  420:      $      ABSTLL = ABSTOL*SIGMA
  421:          IF( VALEIG ) THEN
  422:             VLL = VL*SIGMA
  423:             VUU = VU*SIGMA
  424:          END IF
  425:       END IF
  426: *
  427: *     Call ZHBTRD to reduce Hermitian band matrix to tridiagonal form.
  428: *
  429:       INDD = 1
  430:       INDE = INDD + N
  431:       INDRWK = INDE + N
  432:       INDWRK = 1
  433:       CALL ZHBTRD( JOBZ, UPLO, N, KD, AB, LDAB, RWORK( INDD ),
  434:      $             RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
  435: *
  436: *     If all eigenvalues are desired and ABSTOL is less than or equal
  437: *     to zero, then call DSTERF or ZSTEQR.  If this fails for some
  438: *     eigenvalue, then try DSTEBZ.
  439: *
  440:       TEST = .FALSE.
  441:       IF (INDEIG) THEN
  442:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
  443:             TEST = .TRUE.
  444:          END IF
  445:       END IF
  446:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
  447:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
  448:          INDEE = INDRWK + 2*N
  449:          IF( .NOT.WANTZ ) THEN
  450:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  451:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
  452:          ELSE
  453:             CALL ZLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
  454:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  455:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
  456:      $                   RWORK( INDRWK ), INFO )
  457:             IF( INFO.EQ.0 ) THEN
  458:                DO 10 I = 1, N
  459:                   IFAIL( I ) = 0
  460:    10          CONTINUE
  461:             END IF
  462:          END IF
  463:          IF( INFO.EQ.0 ) THEN
  464:             M = N
  465:             GO TO 30
  466:          END IF
  467:          INFO = 0
  468:       END IF
  469: *
  470: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  471: *
  472:       IF( WANTZ ) THEN
  473:          ORDER = 'B'
  474:       ELSE
  475:          ORDER = 'E'
  476:       END IF
  477:       INDIBL = 1
  478:       INDISP = INDIBL + N
  479:       INDIWK = INDISP + N
  480:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  481:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
  482:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  483:      $             IWORK( INDIWK ), INFO )
  484: *
  485:       IF( WANTZ ) THEN
  486:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
  487:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  488:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
  489: *
  490: *        Apply unitary matrix used in reduction to tridiagonal
  491: *        form to eigenvectors returned by ZSTEIN.
  492: *
  493:          DO 20 J = 1, M
  494:             CALL ZCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
  495:             CALL ZGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
  496:      $                  Z( 1, J ), 1 )
  497:    20    CONTINUE
  498:       END IF
  499: *
  500: *     If matrix was scaled, then rescale eigenvalues appropriately.
  501: *
  502:    30 CONTINUE
  503:       IF( ISCALE.EQ.1 ) THEN
  504:          IF( INFO.EQ.0 ) THEN
  505:             IMAX = M
  506:          ELSE
  507:             IMAX = INFO - 1
  508:          END IF
  509:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  510:       END IF
  511: *
  512: *     If eigenvalues are not in order, then sort them, along with
  513: *     eigenvectors.
  514: *
  515:       IF( WANTZ ) THEN
  516:          DO 50 J = 1, M - 1
  517:             I = 0
  518:             TMP1 = W( J )
  519:             DO 40 JJ = J + 1, M
  520:                IF( W( JJ ).LT.TMP1 ) THEN
  521:                   I = JJ
  522:                   TMP1 = W( JJ )
  523:                END IF
  524:    40       CONTINUE
  525: *
  526:             IF( I.NE.0 ) THEN
  527:                ITMP1 = IWORK( INDIBL+I-1 )
  528:                W( I ) = W( J )
  529:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  530:                W( J ) = TMP1
  531:                IWORK( INDIBL+J-1 ) = ITMP1
  532:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  533:                IF( INFO.NE.0 ) THEN
  534:                   ITMP1 = IFAIL( I )
  535:                   IFAIL( I ) = IFAIL( J )
  536:                   IFAIL( J ) = ITMP1
  537:                END IF
  538:             END IF
  539:    50    CONTINUE
  540:       END IF
  541: *
  542:       RETURN
  543: *
  544: *     End of ZHBEVX
  545: *
  546:       END

CVSweb interface <joel.bertrand@systella.fr>