File:  [local] / rpl / lapack / lapack / zhbevx.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:33 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE ZHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
    2:      $                   VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
    3:      $                   IWORK, IFAIL, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBZ, RANGE, UPLO
   12:       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
   13:       DOUBLE PRECISION   ABSTOL, VL, VU
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IFAIL( * ), IWORK( * )
   17:       DOUBLE PRECISION   RWORK( * ), W( * )
   18:       COMPLEX*16         AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
   19:      $                   Z( LDZ, * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  ZHBEVX computes selected eigenvalues and, optionally, eigenvectors
   26: *  of a complex Hermitian band matrix A.  Eigenvalues and eigenvectors
   27: *  can be selected by specifying either a range of values or a range of
   28: *  indices for the desired eigenvalues.
   29: *
   30: *  Arguments
   31: *  =========
   32: *
   33: *  JOBZ    (input) CHARACTER*1
   34: *          = 'N':  Compute eigenvalues only;
   35: *          = 'V':  Compute eigenvalues and eigenvectors.
   36: *
   37: *  RANGE   (input) CHARACTER*1
   38: *          = 'A': all eigenvalues will be found;
   39: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
   40: *                 will be found;
   41: *          = 'I': the IL-th through IU-th eigenvalues will be found.
   42: *
   43: *  UPLO    (input) CHARACTER*1
   44: *          = 'U':  Upper triangle of A is stored;
   45: *          = 'L':  Lower triangle of A is stored.
   46: *
   47: *  N       (input) INTEGER
   48: *          The order of the matrix A.  N >= 0.
   49: *
   50: *  KD      (input) INTEGER
   51: *          The number of superdiagonals of the matrix A if UPLO = 'U',
   52: *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   53: *
   54: *  AB      (input/output) COMPLEX*16 array, dimension (LDAB, N)
   55: *          On entry, the upper or lower triangle of the Hermitian band
   56: *          matrix A, stored in the first KD+1 rows of the array.  The
   57: *          j-th column of A is stored in the j-th column of the array AB
   58: *          as follows:
   59: *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   60: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   61: *
   62: *          On exit, AB is overwritten by values generated during the
   63: *          reduction to tridiagonal form.
   64: *
   65: *  LDAB    (input) INTEGER
   66: *          The leading dimension of the array AB.  LDAB >= KD + 1.
   67: *
   68: *  Q       (output) COMPLEX*16 array, dimension (LDQ, N)
   69: *          If JOBZ = 'V', the N-by-N unitary matrix used in the
   70: *                          reduction to tridiagonal form.
   71: *          If JOBZ = 'N', the array Q is not referenced.
   72: *
   73: *  LDQ     (input) INTEGER
   74: *          The leading dimension of the array Q.  If JOBZ = 'V', then
   75: *          LDQ >= max(1,N).
   76: *
   77: *  VL      (input) DOUBLE PRECISION
   78: *  VU      (input) DOUBLE PRECISION
   79: *          If RANGE='V', the lower and upper bounds of the interval to
   80: *          be searched for eigenvalues. VL < VU.
   81: *          Not referenced if RANGE = 'A' or 'I'.
   82: *
   83: *  IL      (input) INTEGER
   84: *  IU      (input) INTEGER
   85: *          If RANGE='I', the indices (in ascending order) of the
   86: *          smallest and largest eigenvalues to be returned.
   87: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
   88: *          Not referenced if RANGE = 'A' or 'V'.
   89: *
   90: *  ABSTOL  (input) DOUBLE PRECISION
   91: *          The absolute error tolerance for the eigenvalues.
   92: *          An approximate eigenvalue is accepted as converged
   93: *          when it is determined to lie in an interval [a,b]
   94: *          of width less than or equal to
   95: *
   96: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
   97: *
   98: *          where EPS is the machine precision.  If ABSTOL is less than
   99: *          or equal to zero, then  EPS*|T|  will be used in its place,
  100: *          where |T| is the 1-norm of the tridiagonal matrix obtained
  101: *          by reducing AB to tridiagonal form.
  102: *
  103: *          Eigenvalues will be computed most accurately when ABSTOL is
  104: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  105: *          If this routine returns with INFO>0, indicating that some
  106: *          eigenvectors did not converge, try setting ABSTOL to
  107: *          2*DLAMCH('S').
  108: *
  109: *          See "Computing Small Singular Values of Bidiagonal Matrices
  110: *          with Guaranteed High Relative Accuracy," by Demmel and
  111: *          Kahan, LAPACK Working Note #3.
  112: *
  113: *  M       (output) INTEGER
  114: *          The total number of eigenvalues found.  0 <= M <= N.
  115: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  116: *
  117: *  W       (output) DOUBLE PRECISION array, dimension (N)
  118: *          The first M elements contain the selected eigenvalues in
  119: *          ascending order.
  120: *
  121: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
  122: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  123: *          contain the orthonormal eigenvectors of the matrix A
  124: *          corresponding to the selected eigenvalues, with the i-th
  125: *          column of Z holding the eigenvector associated with W(i).
  126: *          If an eigenvector fails to converge, then that column of Z
  127: *          contains the latest approximation to the eigenvector, and the
  128: *          index of the eigenvector is returned in IFAIL.
  129: *          If JOBZ = 'N', then Z is not referenced.
  130: *          Note: the user must ensure that at least max(1,M) columns are
  131: *          supplied in the array Z; if RANGE = 'V', the exact value of M
  132: *          is not known in advance and an upper bound must be used.
  133: *
  134: *  LDZ     (input) INTEGER
  135: *          The leading dimension of the array Z.  LDZ >= 1, and if
  136: *          JOBZ = 'V', LDZ >= max(1,N).
  137: *
  138: *  WORK    (workspace) COMPLEX*16 array, dimension (N)
  139: *
  140: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
  141: *
  142: *  IWORK   (workspace) INTEGER array, dimension (5*N)
  143: *
  144: *  IFAIL   (output) INTEGER array, dimension (N)
  145: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
  146: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  147: *          indices of the eigenvectors that failed to converge.
  148: *          If JOBZ = 'N', then IFAIL is not referenced.
  149: *
  150: *  INFO    (output) INTEGER
  151: *          = 0:  successful exit
  152: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  153: *          > 0:  if INFO = i, then i eigenvectors failed to converge.
  154: *                Their indices are stored in array IFAIL.
  155: *
  156: *  =====================================================================
  157: *
  158: *     .. Parameters ..
  159:       DOUBLE PRECISION   ZERO, ONE
  160:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  161:       COMPLEX*16         CZERO, CONE
  162:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
  163:      $                   CONE = ( 1.0D0, 0.0D0 ) )
  164: *     ..
  165: *     .. Local Scalars ..
  166:       LOGICAL            ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ
  167:       CHARACTER          ORDER
  168:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  169:      $                   INDISP, INDIWK, INDRWK, INDWRK, ISCALE, ITMP1,
  170:      $                   J, JJ, NSPLIT
  171:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  172:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  173:       COMPLEX*16         CTMP1
  174: *     ..
  175: *     .. External Functions ..
  176:       LOGICAL            LSAME
  177:       DOUBLE PRECISION   DLAMCH, ZLANHB
  178:       EXTERNAL           LSAME, DLAMCH, ZLANHB
  179: *     ..
  180: *     .. External Subroutines ..
  181:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZCOPY,
  182:      $                   ZGEMV, ZHBTRD, ZLACPY, ZLASCL, ZSTEIN, ZSTEQR,
  183:      $                   ZSWAP
  184: *     ..
  185: *     .. Intrinsic Functions ..
  186:       INTRINSIC          DBLE, MAX, MIN, SQRT
  187: *     ..
  188: *     .. Executable Statements ..
  189: *
  190: *     Test the input parameters.
  191: *
  192:       WANTZ = LSAME( JOBZ, 'V' )
  193:       ALLEIG = LSAME( RANGE, 'A' )
  194:       VALEIG = LSAME( RANGE, 'V' )
  195:       INDEIG = LSAME( RANGE, 'I' )
  196:       LOWER = LSAME( UPLO, 'L' )
  197: *
  198:       INFO = 0
  199:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  200:          INFO = -1
  201:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  202:          INFO = -2
  203:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  204:          INFO = -3
  205:       ELSE IF( N.LT.0 ) THEN
  206:          INFO = -4
  207:       ELSE IF( KD.LT.0 ) THEN
  208:          INFO = -5
  209:       ELSE IF( LDAB.LT.KD+1 ) THEN
  210:          INFO = -7
  211:       ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
  212:          INFO = -9
  213:       ELSE
  214:          IF( VALEIG ) THEN
  215:             IF( N.GT.0 .AND. VU.LE.VL )
  216:      $         INFO = -11
  217:          ELSE IF( INDEIG ) THEN
  218:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  219:                INFO = -12
  220:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  221:                INFO = -13
  222:             END IF
  223:          END IF
  224:       END IF
  225:       IF( INFO.EQ.0 ) THEN
  226:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  227:      $      INFO = -18
  228:       END IF
  229: *
  230:       IF( INFO.NE.0 ) THEN
  231:          CALL XERBLA( 'ZHBEVX', -INFO )
  232:          RETURN
  233:       END IF
  234: *
  235: *     Quick return if possible
  236: *
  237:       M = 0
  238:       IF( N.EQ.0 )
  239:      $   RETURN
  240: *
  241:       IF( N.EQ.1 ) THEN
  242:          M = 1
  243:          IF( LOWER ) THEN
  244:             CTMP1 = AB( 1, 1 )
  245:          ELSE
  246:             CTMP1 = AB( KD+1, 1 )
  247:          END IF
  248:          TMP1 = DBLE( CTMP1 )
  249:          IF( VALEIG ) THEN
  250:             IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
  251:      $         M = 0
  252:          END IF
  253:          IF( M.EQ.1 ) THEN
  254:             W( 1 ) = CTMP1
  255:             IF( WANTZ )
  256:      $         Z( 1, 1 ) = CONE
  257:          END IF
  258:          RETURN
  259:       END IF
  260: *
  261: *     Get machine constants.
  262: *
  263:       SAFMIN = DLAMCH( 'Safe minimum' )
  264:       EPS = DLAMCH( 'Precision' )
  265:       SMLNUM = SAFMIN / EPS
  266:       BIGNUM = ONE / SMLNUM
  267:       RMIN = SQRT( SMLNUM )
  268:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  269: *
  270: *     Scale matrix to allowable range, if necessary.
  271: *
  272:       ISCALE = 0
  273:       ABSTLL = ABSTOL
  274:       IF( VALEIG ) THEN
  275:          VLL = VL
  276:          VUU = VU
  277:       ELSE
  278:          VLL = ZERO
  279:          VUU = ZERO
  280:       END IF
  281:       ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
  282:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  283:          ISCALE = 1
  284:          SIGMA = RMIN / ANRM
  285:       ELSE IF( ANRM.GT.RMAX ) THEN
  286:          ISCALE = 1
  287:          SIGMA = RMAX / ANRM
  288:       END IF
  289:       IF( ISCALE.EQ.1 ) THEN
  290:          IF( LOWER ) THEN
  291:             CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  292:          ELSE
  293:             CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  294:          END IF
  295:          IF( ABSTOL.GT.0 )
  296:      $      ABSTLL = ABSTOL*SIGMA
  297:          IF( VALEIG ) THEN
  298:             VLL = VL*SIGMA
  299:             VUU = VU*SIGMA
  300:          END IF
  301:       END IF
  302: *
  303: *     Call ZHBTRD to reduce Hermitian band matrix to tridiagonal form.
  304: *
  305:       INDD = 1
  306:       INDE = INDD + N
  307:       INDRWK = INDE + N
  308:       INDWRK = 1
  309:       CALL ZHBTRD( JOBZ, UPLO, N, KD, AB, LDAB, RWORK( INDD ),
  310:      $             RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
  311: *
  312: *     If all eigenvalues are desired and ABSTOL is less than or equal
  313: *     to zero, then call DSTERF or ZSTEQR.  If this fails for some
  314: *     eigenvalue, then try DSTEBZ.
  315: *
  316:       TEST = .FALSE.
  317:       IF (INDEIG) THEN
  318:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
  319:             TEST = .TRUE.
  320:          END IF
  321:       END IF
  322:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
  323:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
  324:          INDEE = INDRWK + 2*N
  325:          IF( .NOT.WANTZ ) THEN
  326:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  327:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
  328:          ELSE
  329:             CALL ZLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
  330:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  331:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
  332:      $                   RWORK( INDRWK ), INFO )
  333:             IF( INFO.EQ.0 ) THEN
  334:                DO 10 I = 1, N
  335:                   IFAIL( I ) = 0
  336:    10          CONTINUE
  337:             END IF
  338:          END IF
  339:          IF( INFO.EQ.0 ) THEN
  340:             M = N
  341:             GO TO 30
  342:          END IF
  343:          INFO = 0
  344:       END IF
  345: *
  346: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  347: *
  348:       IF( WANTZ ) THEN
  349:          ORDER = 'B'
  350:       ELSE
  351:          ORDER = 'E'
  352:       END IF
  353:       INDIBL = 1
  354:       INDISP = INDIBL + N
  355:       INDIWK = INDISP + N
  356:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  357:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
  358:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  359:      $             IWORK( INDIWK ), INFO )
  360: *
  361:       IF( WANTZ ) THEN
  362:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
  363:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  364:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
  365: *
  366: *        Apply unitary matrix used in reduction to tridiagonal
  367: *        form to eigenvectors returned by ZSTEIN.
  368: *
  369:          DO 20 J = 1, M
  370:             CALL ZCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
  371:             CALL ZGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
  372:      $                  Z( 1, J ), 1 )
  373:    20    CONTINUE
  374:       END IF
  375: *
  376: *     If matrix was scaled, then rescale eigenvalues appropriately.
  377: *
  378:    30 CONTINUE
  379:       IF( ISCALE.EQ.1 ) THEN
  380:          IF( INFO.EQ.0 ) THEN
  381:             IMAX = M
  382:          ELSE
  383:             IMAX = INFO - 1
  384:          END IF
  385:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  386:       END IF
  387: *
  388: *     If eigenvalues are not in order, then sort them, along with
  389: *     eigenvectors.
  390: *
  391:       IF( WANTZ ) THEN
  392:          DO 50 J = 1, M - 1
  393:             I = 0
  394:             TMP1 = W( J )
  395:             DO 40 JJ = J + 1, M
  396:                IF( W( JJ ).LT.TMP1 ) THEN
  397:                   I = JJ
  398:                   TMP1 = W( JJ )
  399:                END IF
  400:    40       CONTINUE
  401: *
  402:             IF( I.NE.0 ) THEN
  403:                ITMP1 = IWORK( INDIBL+I-1 )
  404:                W( I ) = W( J )
  405:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  406:                W( J ) = TMP1
  407:                IWORK( INDIBL+J-1 ) = ITMP1
  408:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  409:                IF( INFO.NE.0 ) THEN
  410:                   ITMP1 = IFAIL( I )
  411:                   IFAIL( I ) = IFAIL( J )
  412:                   IFAIL( J ) = ITMP1
  413:                END IF
  414:             END IF
  415:    50    CONTINUE
  416:       END IF
  417: *
  418:       RETURN
  419: *
  420: *     End of ZHBEVX
  421: *
  422:       END

CVSweb interface <joel.bertrand@systella.fr>