File:  [local] / rpl / lapack / lapack / zhbevx.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:22 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZHBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHBEVX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbevx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbevx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbevx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
   22: *                          VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
   23: *                          IWORK, IFAIL, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
   28: *       DOUBLE PRECISION   ABSTOL, VL, VU
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IFAIL( * ), IWORK( * )
   32: *       DOUBLE PRECISION   RWORK( * ), W( * )
   33: *       COMPLEX*16         AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
   34: *      $                   Z( LDZ, * )
   35: *       ..
   36: *
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> ZHBEVX computes selected eigenvalues and, optionally, eigenvectors
   44: *> of a complex Hermitian band matrix A.  Eigenvalues and eigenvectors
   45: *> can be selected by specifying either a range of values or a range of
   46: *> indices for the desired eigenvalues.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] JOBZ
   53: *> \verbatim
   54: *>          JOBZ is CHARACTER*1
   55: *>          = 'N':  Compute eigenvalues only;
   56: *>          = 'V':  Compute eigenvalues and eigenvectors.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] RANGE
   60: *> \verbatim
   61: *>          RANGE is CHARACTER*1
   62: *>          = 'A': all eigenvalues will be found;
   63: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
   64: *>                 will be found;
   65: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] UPLO
   69: *> \verbatim
   70: *>          UPLO is CHARACTER*1
   71: *>          = 'U':  Upper triangle of A is stored;
   72: *>          = 'L':  Lower triangle of A is stored.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] N
   76: *> \verbatim
   77: *>          N is INTEGER
   78: *>          The order of the matrix A.  N >= 0.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] KD
   82: *> \verbatim
   83: *>          KD is INTEGER
   84: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
   85: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   86: *> \endverbatim
   87: *>
   88: *> \param[in,out] AB
   89: *> \verbatim
   90: *>          AB is COMPLEX*16 array, dimension (LDAB, N)
   91: *>          On entry, the upper or lower triangle of the Hermitian band
   92: *>          matrix A, stored in the first KD+1 rows of the array.  The
   93: *>          j-th column of A is stored in the j-th column of the array AB
   94: *>          as follows:
   95: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   96: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   97: *>
   98: *>          On exit, AB is overwritten by values generated during the
   99: *>          reduction to tridiagonal form.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDAB
  103: *> \verbatim
  104: *>          LDAB is INTEGER
  105: *>          The leading dimension of the array AB.  LDAB >= KD + 1.
  106: *> \endverbatim
  107: *>
  108: *> \param[out] Q
  109: *> \verbatim
  110: *>          Q is COMPLEX*16 array, dimension (LDQ, N)
  111: *>          If JOBZ = 'V', the N-by-N unitary matrix used in the
  112: *>                          reduction to tridiagonal form.
  113: *>          If JOBZ = 'N', the array Q is not referenced.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDQ
  117: *> \verbatim
  118: *>          LDQ is INTEGER
  119: *>          The leading dimension of the array Q.  If JOBZ = 'V', then
  120: *>          LDQ >= max(1,N).
  121: *> \endverbatim
  122: *>
  123: *> \param[in] VL
  124: *> \verbatim
  125: *>          VL is DOUBLE PRECISION
  126: *>          If RANGE='V', the lower bound of the interval to
  127: *>          be searched for eigenvalues. VL < VU.
  128: *>          Not referenced if RANGE = 'A' or 'I'.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] VU
  132: *> \verbatim
  133: *>          VU is DOUBLE PRECISION
  134: *>          If RANGE='V', the upper bound of the interval to
  135: *>          be searched for eigenvalues. VL < VU.
  136: *>          Not referenced if RANGE = 'A' or 'I'.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] IL
  140: *> \verbatim
  141: *>          IL is INTEGER
  142: *>          If RANGE='I', the index of the
  143: *>          smallest eigenvalue to be returned.
  144: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  145: *>          Not referenced if RANGE = 'A' or 'V'.
  146: *> \endverbatim
  147: *>
  148: *> \param[in] IU
  149: *> \verbatim
  150: *>          IU is INTEGER
  151: *>          If RANGE='I', the index of the
  152: *>          largest eigenvalue to be returned.
  153: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  154: *>          Not referenced if RANGE = 'A' or 'V'.
  155: *> \endverbatim
  156: *>
  157: *> \param[in] ABSTOL
  158: *> \verbatim
  159: *>          ABSTOL is DOUBLE PRECISION
  160: *>          The absolute error tolerance for the eigenvalues.
  161: *>          An approximate eigenvalue is accepted as converged
  162: *>          when it is determined to lie in an interval [a,b]
  163: *>          of width less than or equal to
  164: *>
  165: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  166: *>
  167: *>          where EPS is the machine precision.  If ABSTOL is less than
  168: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  169: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  170: *>          by reducing AB to tridiagonal form.
  171: *>
  172: *>          Eigenvalues will be computed most accurately when ABSTOL is
  173: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  174: *>          If this routine returns with INFO>0, indicating that some
  175: *>          eigenvectors did not converge, try setting ABSTOL to
  176: *>          2*DLAMCH('S').
  177: *>
  178: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  179: *>          with Guaranteed High Relative Accuracy," by Demmel and
  180: *>          Kahan, LAPACK Working Note #3.
  181: *> \endverbatim
  182: *>
  183: *> \param[out] M
  184: *> \verbatim
  185: *>          M is INTEGER
  186: *>          The total number of eigenvalues found.  0 <= M <= N.
  187: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  188: *> \endverbatim
  189: *>
  190: *> \param[out] W
  191: *> \verbatim
  192: *>          W is DOUBLE PRECISION array, dimension (N)
  193: *>          The first M elements contain the selected eigenvalues in
  194: *>          ascending order.
  195: *> \endverbatim
  196: *>
  197: *> \param[out] Z
  198: *> \verbatim
  199: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
  200: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  201: *>          contain the orthonormal eigenvectors of the matrix A
  202: *>          corresponding to the selected eigenvalues, with the i-th
  203: *>          column of Z holding the eigenvector associated with W(i).
  204: *>          If an eigenvector fails to converge, then that column of Z
  205: *>          contains the latest approximation to the eigenvector, and the
  206: *>          index of the eigenvector is returned in IFAIL.
  207: *>          If JOBZ = 'N', then Z is not referenced.
  208: *>          Note: the user must ensure that at least max(1,M) columns are
  209: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  210: *>          is not known in advance and an upper bound must be used.
  211: *> \endverbatim
  212: *>
  213: *> \param[in] LDZ
  214: *> \verbatim
  215: *>          LDZ is INTEGER
  216: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  217: *>          JOBZ = 'V', LDZ >= max(1,N).
  218: *> \endverbatim
  219: *>
  220: *> \param[out] WORK
  221: *> \verbatim
  222: *>          WORK is COMPLEX*16 array, dimension (N)
  223: *> \endverbatim
  224: *>
  225: *> \param[out] RWORK
  226: *> \verbatim
  227: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
  228: *> \endverbatim
  229: *>
  230: *> \param[out] IWORK
  231: *> \verbatim
  232: *>          IWORK is INTEGER array, dimension (5*N)
  233: *> \endverbatim
  234: *>
  235: *> \param[out] IFAIL
  236: *> \verbatim
  237: *>          IFAIL is INTEGER array, dimension (N)
  238: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
  239: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  240: *>          indices of the eigenvectors that failed to converge.
  241: *>          If JOBZ = 'N', then IFAIL is not referenced.
  242: *> \endverbatim
  243: *>
  244: *> \param[out] INFO
  245: *> \verbatim
  246: *>          INFO is INTEGER
  247: *>          = 0:  successful exit
  248: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  249: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
  250: *>                Their indices are stored in array IFAIL.
  251: *> \endverbatim
  252: *
  253: *  Authors:
  254: *  ========
  255: *
  256: *> \author Univ. of Tennessee
  257: *> \author Univ. of California Berkeley
  258: *> \author Univ. of Colorado Denver
  259: *> \author NAG Ltd.
  260: *
  261: *> \ingroup complex16OTHEReigen
  262: *
  263: *  =====================================================================
  264:       SUBROUTINE ZHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
  265:      $                   VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
  266:      $                   IWORK, IFAIL, INFO )
  267: *
  268: *  -- LAPACK driver routine --
  269: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  270: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  271: *
  272: *     .. Scalar Arguments ..
  273:       CHARACTER          JOBZ, RANGE, UPLO
  274:       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
  275:       DOUBLE PRECISION   ABSTOL, VL, VU
  276: *     ..
  277: *     .. Array Arguments ..
  278:       INTEGER            IFAIL( * ), IWORK( * )
  279:       DOUBLE PRECISION   RWORK( * ), W( * )
  280:       COMPLEX*16         AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
  281:      $                   Z( LDZ, * )
  282: *     ..
  283: *
  284: *  =====================================================================
  285: *
  286: *     .. Parameters ..
  287:       DOUBLE PRECISION   ZERO, ONE
  288:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  289:       COMPLEX*16         CZERO, CONE
  290:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
  291:      $                   CONE = ( 1.0D0, 0.0D0 ) )
  292: *     ..
  293: *     .. Local Scalars ..
  294:       LOGICAL            ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ
  295:       CHARACTER          ORDER
  296:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  297:      $                   INDISP, INDIWK, INDRWK, INDWRK, ISCALE, ITMP1,
  298:      $                   J, JJ, NSPLIT
  299:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  300:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  301:       COMPLEX*16         CTMP1
  302: *     ..
  303: *     .. External Functions ..
  304:       LOGICAL            LSAME
  305:       DOUBLE PRECISION   DLAMCH, ZLANHB
  306:       EXTERNAL           LSAME, DLAMCH, ZLANHB
  307: *     ..
  308: *     .. External Subroutines ..
  309:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZCOPY,
  310:      $                   ZGEMV, ZHBTRD, ZLACPY, ZLASCL, ZSTEIN, ZSTEQR,
  311:      $                   ZSWAP
  312: *     ..
  313: *     .. Intrinsic Functions ..
  314:       INTRINSIC          DBLE, MAX, MIN, SQRT
  315: *     ..
  316: *     .. Executable Statements ..
  317: *
  318: *     Test the input parameters.
  319: *
  320:       WANTZ = LSAME( JOBZ, 'V' )
  321:       ALLEIG = LSAME( RANGE, 'A' )
  322:       VALEIG = LSAME( RANGE, 'V' )
  323:       INDEIG = LSAME( RANGE, 'I' )
  324:       LOWER = LSAME( UPLO, 'L' )
  325: *
  326:       INFO = 0
  327:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  328:          INFO = -1
  329:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  330:          INFO = -2
  331:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  332:          INFO = -3
  333:       ELSE IF( N.LT.0 ) THEN
  334:          INFO = -4
  335:       ELSE IF( KD.LT.0 ) THEN
  336:          INFO = -5
  337:       ELSE IF( LDAB.LT.KD+1 ) THEN
  338:          INFO = -7
  339:       ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
  340:          INFO = -9
  341:       ELSE
  342:          IF( VALEIG ) THEN
  343:             IF( N.GT.0 .AND. VU.LE.VL )
  344:      $         INFO = -11
  345:          ELSE IF( INDEIG ) THEN
  346:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  347:                INFO = -12
  348:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  349:                INFO = -13
  350:             END IF
  351:          END IF
  352:       END IF
  353:       IF( INFO.EQ.0 ) THEN
  354:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  355:      $      INFO = -18
  356:       END IF
  357: *
  358:       IF( INFO.NE.0 ) THEN
  359:          CALL XERBLA( 'ZHBEVX', -INFO )
  360:          RETURN
  361:       END IF
  362: *
  363: *     Quick return if possible
  364: *
  365:       M = 0
  366:       IF( N.EQ.0 )
  367:      $   RETURN
  368: *
  369:       IF( N.EQ.1 ) THEN
  370:          M = 1
  371:          IF( LOWER ) THEN
  372:             CTMP1 = AB( 1, 1 )
  373:          ELSE
  374:             CTMP1 = AB( KD+1, 1 )
  375:          END IF
  376:          TMP1 = DBLE( CTMP1 )
  377:          IF( VALEIG ) THEN
  378:             IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
  379:      $         M = 0
  380:          END IF
  381:          IF( M.EQ.1 ) THEN
  382:             W( 1 ) = DBLE( CTMP1 )
  383:             IF( WANTZ )
  384:      $         Z( 1, 1 ) = CONE
  385:          END IF
  386:          RETURN
  387:       END IF
  388: *
  389: *     Get machine constants.
  390: *
  391:       SAFMIN = DLAMCH( 'Safe minimum' )
  392:       EPS = DLAMCH( 'Precision' )
  393:       SMLNUM = SAFMIN / EPS
  394:       BIGNUM = ONE / SMLNUM
  395:       RMIN = SQRT( SMLNUM )
  396:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  397: *
  398: *     Scale matrix to allowable range, if necessary.
  399: *
  400:       ISCALE = 0
  401:       ABSTLL = ABSTOL
  402:       IF( VALEIG ) THEN
  403:          VLL = VL
  404:          VUU = VU
  405:       ELSE
  406:          VLL = ZERO
  407:          VUU = ZERO
  408:       END IF
  409:       ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
  410:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  411:          ISCALE = 1
  412:          SIGMA = RMIN / ANRM
  413:       ELSE IF( ANRM.GT.RMAX ) THEN
  414:          ISCALE = 1
  415:          SIGMA = RMAX / ANRM
  416:       END IF
  417:       IF( ISCALE.EQ.1 ) THEN
  418:          IF( LOWER ) THEN
  419:             CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  420:          ELSE
  421:             CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  422:          END IF
  423:          IF( ABSTOL.GT.0 )
  424:      $      ABSTLL = ABSTOL*SIGMA
  425:          IF( VALEIG ) THEN
  426:             VLL = VL*SIGMA
  427:             VUU = VU*SIGMA
  428:          END IF
  429:       END IF
  430: *
  431: *     Call ZHBTRD to reduce Hermitian band matrix to tridiagonal form.
  432: *
  433:       INDD = 1
  434:       INDE = INDD + N
  435:       INDRWK = INDE + N
  436:       INDWRK = 1
  437:       CALL ZHBTRD( JOBZ, UPLO, N, KD, AB, LDAB, RWORK( INDD ),
  438:      $             RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
  439: *
  440: *     If all eigenvalues are desired and ABSTOL is less than or equal
  441: *     to zero, then call DSTERF or ZSTEQR.  If this fails for some
  442: *     eigenvalue, then try DSTEBZ.
  443: *
  444:       TEST = .FALSE.
  445:       IF (INDEIG) THEN
  446:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
  447:             TEST = .TRUE.
  448:          END IF
  449:       END IF
  450:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
  451:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
  452:          INDEE = INDRWK + 2*N
  453:          IF( .NOT.WANTZ ) THEN
  454:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  455:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
  456:          ELSE
  457:             CALL ZLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
  458:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  459:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
  460:      $                   RWORK( INDRWK ), INFO )
  461:             IF( INFO.EQ.0 ) THEN
  462:                DO 10 I = 1, N
  463:                   IFAIL( I ) = 0
  464:    10          CONTINUE
  465:             END IF
  466:          END IF
  467:          IF( INFO.EQ.0 ) THEN
  468:             M = N
  469:             GO TO 30
  470:          END IF
  471:          INFO = 0
  472:       END IF
  473: *
  474: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  475: *
  476:       IF( WANTZ ) THEN
  477:          ORDER = 'B'
  478:       ELSE
  479:          ORDER = 'E'
  480:       END IF
  481:       INDIBL = 1
  482:       INDISP = INDIBL + N
  483:       INDIWK = INDISP + N
  484:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  485:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
  486:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  487:      $             IWORK( INDIWK ), INFO )
  488: *
  489:       IF( WANTZ ) THEN
  490:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
  491:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  492:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
  493: *
  494: *        Apply unitary matrix used in reduction to tridiagonal
  495: *        form to eigenvectors returned by ZSTEIN.
  496: *
  497:          DO 20 J = 1, M
  498:             CALL ZCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
  499:             CALL ZGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
  500:      $                  Z( 1, J ), 1 )
  501:    20    CONTINUE
  502:       END IF
  503: *
  504: *     If matrix was scaled, then rescale eigenvalues appropriately.
  505: *
  506:    30 CONTINUE
  507:       IF( ISCALE.EQ.1 ) THEN
  508:          IF( INFO.EQ.0 ) THEN
  509:             IMAX = M
  510:          ELSE
  511:             IMAX = INFO - 1
  512:          END IF
  513:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  514:       END IF
  515: *
  516: *     If eigenvalues are not in order, then sort them, along with
  517: *     eigenvectors.
  518: *
  519:       IF( WANTZ ) THEN
  520:          DO 50 J = 1, M - 1
  521:             I = 0
  522:             TMP1 = W( J )
  523:             DO 40 JJ = J + 1, M
  524:                IF( W( JJ ).LT.TMP1 ) THEN
  525:                   I = JJ
  526:                   TMP1 = W( JJ )
  527:                END IF
  528:    40       CONTINUE
  529: *
  530:             IF( I.NE.0 ) THEN
  531:                ITMP1 = IWORK( INDIBL+I-1 )
  532:                W( I ) = W( J )
  533:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  534:                W( J ) = TMP1
  535:                IWORK( INDIBL+J-1 ) = ITMP1
  536:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  537:                IF( INFO.NE.0 ) THEN
  538:                   ITMP1 = IFAIL( I )
  539:                   IFAIL( I ) = IFAIL( J )
  540:                   IFAIL( J ) = ITMP1
  541:                END IF
  542:             END IF
  543:    50    CONTINUE
  544:       END IF
  545: *
  546:       RETURN
  547: *
  548: *     End of ZHBEVX
  549: *
  550:       END

CVSweb interface <joel.bertrand@systella.fr>