Annotation of rpl/lapack/lapack/zhbevx.f, revision 1.18

1.8       bertrand    1: *> \brief <b> ZHBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZHBEVX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbevx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbevx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbevx.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
                     22: *                          VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
                     23: *                          IWORK, IFAIL, INFO )
1.15      bertrand   24: *
1.8       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBZ, RANGE, UPLO
                     27: *       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
                     28: *       DOUBLE PRECISION   ABSTOL, VL, VU
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IFAIL( * ), IWORK( * )
                     32: *       DOUBLE PRECISION   RWORK( * ), W( * )
                     33: *       COMPLEX*16         AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
                     34: *      $                   Z( LDZ, * )
                     35: *       ..
1.15      bertrand   36: *
1.8       bertrand   37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> ZHBEVX computes selected eigenvalues and, optionally, eigenvectors
                     44: *> of a complex Hermitian band matrix A.  Eigenvalues and eigenvectors
                     45: *> can be selected by specifying either a range of values or a range of
                     46: *> indices for the desired eigenvalues.
                     47: *> \endverbatim
                     48: *
                     49: *  Arguments:
                     50: *  ==========
                     51: *
                     52: *> \param[in] JOBZ
                     53: *> \verbatim
                     54: *>          JOBZ is CHARACTER*1
                     55: *>          = 'N':  Compute eigenvalues only;
                     56: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     57: *> \endverbatim
                     58: *>
                     59: *> \param[in] RANGE
                     60: *> \verbatim
                     61: *>          RANGE is CHARACTER*1
                     62: *>          = 'A': all eigenvalues will be found;
                     63: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     64: *>                 will be found;
                     65: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] UPLO
                     69: *> \verbatim
                     70: *>          UPLO is CHARACTER*1
                     71: *>          = 'U':  Upper triangle of A is stored;
                     72: *>          = 'L':  Lower triangle of A is stored.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] N
                     76: *> \verbatim
                     77: *>          N is INTEGER
                     78: *>          The order of the matrix A.  N >= 0.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] KD
                     82: *> \verbatim
                     83: *>          KD is INTEGER
                     84: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
                     85: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in,out] AB
                     89: *> \verbatim
                     90: *>          AB is COMPLEX*16 array, dimension (LDAB, N)
                     91: *>          On entry, the upper or lower triangle of the Hermitian band
                     92: *>          matrix A, stored in the first KD+1 rows of the array.  The
                     93: *>          j-th column of A is stored in the j-th column of the array AB
                     94: *>          as follows:
                     95: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     96: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     97: *>
                     98: *>          On exit, AB is overwritten by values generated during the
                     99: *>          reduction to tridiagonal form.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] LDAB
                    103: *> \verbatim
                    104: *>          LDAB is INTEGER
                    105: *>          The leading dimension of the array AB.  LDAB >= KD + 1.
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[out] Q
                    109: *> \verbatim
                    110: *>          Q is COMPLEX*16 array, dimension (LDQ, N)
                    111: *>          If JOBZ = 'V', the N-by-N unitary matrix used in the
                    112: *>                          reduction to tridiagonal form.
                    113: *>          If JOBZ = 'N', the array Q is not referenced.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] LDQ
                    117: *> \verbatim
                    118: *>          LDQ is INTEGER
                    119: *>          The leading dimension of the array Q.  If JOBZ = 'V', then
                    120: *>          LDQ >= max(1,N).
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[in] VL
                    124: *> \verbatim
                    125: *>          VL is DOUBLE PRECISION
1.13      bertrand  126: *>          If RANGE='V', the lower bound of the interval to
                    127: *>          be searched for eigenvalues. VL < VU.
                    128: *>          Not referenced if RANGE = 'A' or 'I'.
1.8       bertrand  129: *> \endverbatim
                    130: *>
                    131: *> \param[in] VU
                    132: *> \verbatim
                    133: *>          VU is DOUBLE PRECISION
1.13      bertrand  134: *>          If RANGE='V', the upper bound of the interval to
1.8       bertrand  135: *>          be searched for eigenvalues. VL < VU.
                    136: *>          Not referenced if RANGE = 'A' or 'I'.
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[in] IL
                    140: *> \verbatim
                    141: *>          IL is INTEGER
1.13      bertrand  142: *>          If RANGE='I', the index of the
                    143: *>          smallest eigenvalue to be returned.
                    144: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    145: *>          Not referenced if RANGE = 'A' or 'V'.
1.8       bertrand  146: *> \endverbatim
                    147: *>
                    148: *> \param[in] IU
                    149: *> \verbatim
                    150: *>          IU is INTEGER
1.13      bertrand  151: *>          If RANGE='I', the index of the
                    152: *>          largest eigenvalue to be returned.
1.8       bertrand  153: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    154: *>          Not referenced if RANGE = 'A' or 'V'.
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[in] ABSTOL
                    158: *> \verbatim
                    159: *>          ABSTOL is DOUBLE PRECISION
                    160: *>          The absolute error tolerance for the eigenvalues.
                    161: *>          An approximate eigenvalue is accepted as converged
                    162: *>          when it is determined to lie in an interval [a,b]
                    163: *>          of width less than or equal to
                    164: *>
                    165: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    166: *>
                    167: *>          where EPS is the machine precision.  If ABSTOL is less than
                    168: *>          or equal to zero, then  EPS*|T|  will be used in its place,
                    169: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
                    170: *>          by reducing AB to tridiagonal form.
                    171: *>
                    172: *>          Eigenvalues will be computed most accurately when ABSTOL is
                    173: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    174: *>          If this routine returns with INFO>0, indicating that some
                    175: *>          eigenvectors did not converge, try setting ABSTOL to
                    176: *>          2*DLAMCH('S').
                    177: *>
                    178: *>          See "Computing Small Singular Values of Bidiagonal Matrices
                    179: *>          with Guaranteed High Relative Accuracy," by Demmel and
                    180: *>          Kahan, LAPACK Working Note #3.
                    181: *> \endverbatim
                    182: *>
                    183: *> \param[out] M
                    184: *> \verbatim
                    185: *>          M is INTEGER
                    186: *>          The total number of eigenvalues found.  0 <= M <= N.
                    187: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    188: *> \endverbatim
                    189: *>
                    190: *> \param[out] W
                    191: *> \verbatim
                    192: *>          W is DOUBLE PRECISION array, dimension (N)
                    193: *>          The first M elements contain the selected eigenvalues in
                    194: *>          ascending order.
                    195: *> \endverbatim
                    196: *>
                    197: *> \param[out] Z
                    198: *> \verbatim
                    199: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
                    200: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    201: *>          contain the orthonormal eigenvectors of the matrix A
                    202: *>          corresponding to the selected eigenvalues, with the i-th
                    203: *>          column of Z holding the eigenvector associated with W(i).
                    204: *>          If an eigenvector fails to converge, then that column of Z
                    205: *>          contains the latest approximation to the eigenvector, and the
                    206: *>          index of the eigenvector is returned in IFAIL.
                    207: *>          If JOBZ = 'N', then Z is not referenced.
                    208: *>          Note: the user must ensure that at least max(1,M) columns are
                    209: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
                    210: *>          is not known in advance and an upper bound must be used.
                    211: *> \endverbatim
                    212: *>
                    213: *> \param[in] LDZ
                    214: *> \verbatim
                    215: *>          LDZ is INTEGER
                    216: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    217: *>          JOBZ = 'V', LDZ >= max(1,N).
                    218: *> \endverbatim
                    219: *>
                    220: *> \param[out] WORK
                    221: *> \verbatim
                    222: *>          WORK is COMPLEX*16 array, dimension (N)
                    223: *> \endverbatim
                    224: *>
                    225: *> \param[out] RWORK
                    226: *> \verbatim
                    227: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
                    228: *> \endverbatim
                    229: *>
                    230: *> \param[out] IWORK
                    231: *> \verbatim
                    232: *>          IWORK is INTEGER array, dimension (5*N)
                    233: *> \endverbatim
                    234: *>
                    235: *> \param[out] IFAIL
                    236: *> \verbatim
                    237: *>          IFAIL is INTEGER array, dimension (N)
                    238: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    239: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    240: *>          indices of the eigenvectors that failed to converge.
                    241: *>          If JOBZ = 'N', then IFAIL is not referenced.
                    242: *> \endverbatim
                    243: *>
                    244: *> \param[out] INFO
                    245: *> \verbatim
                    246: *>          INFO is INTEGER
                    247: *>          = 0:  successful exit
                    248: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    249: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
                    250: *>                Their indices are stored in array IFAIL.
                    251: *> \endverbatim
                    252: *
                    253: *  Authors:
                    254: *  ========
                    255: *
1.15      bertrand  256: *> \author Univ. of Tennessee
                    257: *> \author Univ. of California Berkeley
                    258: *> \author Univ. of Colorado Denver
                    259: *> \author NAG Ltd.
1.8       bertrand  260: *
                    261: *> \ingroup complex16OTHEReigen
                    262: *
                    263: *  =====================================================================
1.1       bertrand  264:       SUBROUTINE ZHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
                    265:      $                   VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
                    266:      $                   IWORK, IFAIL, INFO )
                    267: *
1.18    ! bertrand  268: *  -- LAPACK driver routine --
1.1       bertrand  269: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    270: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    271: *
                    272: *     .. Scalar Arguments ..
                    273:       CHARACTER          JOBZ, RANGE, UPLO
                    274:       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
                    275:       DOUBLE PRECISION   ABSTOL, VL, VU
                    276: *     ..
                    277: *     .. Array Arguments ..
                    278:       INTEGER            IFAIL( * ), IWORK( * )
                    279:       DOUBLE PRECISION   RWORK( * ), W( * )
                    280:       COMPLEX*16         AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
                    281:      $                   Z( LDZ, * )
                    282: *     ..
                    283: *
                    284: *  =====================================================================
                    285: *
                    286: *     .. Parameters ..
                    287:       DOUBLE PRECISION   ZERO, ONE
                    288:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    289:       COMPLEX*16         CZERO, CONE
                    290:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
                    291:      $                   CONE = ( 1.0D0, 0.0D0 ) )
                    292: *     ..
                    293: *     .. Local Scalars ..
                    294:       LOGICAL            ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ
                    295:       CHARACTER          ORDER
                    296:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
                    297:      $                   INDISP, INDIWK, INDRWK, INDWRK, ISCALE, ITMP1,
                    298:      $                   J, JJ, NSPLIT
                    299:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    300:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    301:       COMPLEX*16         CTMP1
                    302: *     ..
                    303: *     .. External Functions ..
                    304:       LOGICAL            LSAME
                    305:       DOUBLE PRECISION   DLAMCH, ZLANHB
                    306:       EXTERNAL           LSAME, DLAMCH, ZLANHB
                    307: *     ..
                    308: *     .. External Subroutines ..
                    309:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZCOPY,
                    310:      $                   ZGEMV, ZHBTRD, ZLACPY, ZLASCL, ZSTEIN, ZSTEQR,
                    311:      $                   ZSWAP
                    312: *     ..
                    313: *     .. Intrinsic Functions ..
                    314:       INTRINSIC          DBLE, MAX, MIN, SQRT
                    315: *     ..
                    316: *     .. Executable Statements ..
                    317: *
                    318: *     Test the input parameters.
                    319: *
                    320:       WANTZ = LSAME( JOBZ, 'V' )
                    321:       ALLEIG = LSAME( RANGE, 'A' )
                    322:       VALEIG = LSAME( RANGE, 'V' )
                    323:       INDEIG = LSAME( RANGE, 'I' )
                    324:       LOWER = LSAME( UPLO, 'L' )
                    325: *
                    326:       INFO = 0
                    327:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    328:          INFO = -1
                    329:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    330:          INFO = -2
                    331:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    332:          INFO = -3
                    333:       ELSE IF( N.LT.0 ) THEN
                    334:          INFO = -4
                    335:       ELSE IF( KD.LT.0 ) THEN
                    336:          INFO = -5
                    337:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    338:          INFO = -7
                    339:       ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
                    340:          INFO = -9
                    341:       ELSE
                    342:          IF( VALEIG ) THEN
                    343:             IF( N.GT.0 .AND. VU.LE.VL )
                    344:      $         INFO = -11
                    345:          ELSE IF( INDEIG ) THEN
                    346:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    347:                INFO = -12
                    348:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    349:                INFO = -13
                    350:             END IF
                    351:          END IF
                    352:       END IF
                    353:       IF( INFO.EQ.0 ) THEN
                    354:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
                    355:      $      INFO = -18
                    356:       END IF
                    357: *
                    358:       IF( INFO.NE.0 ) THEN
                    359:          CALL XERBLA( 'ZHBEVX', -INFO )
                    360:          RETURN
                    361:       END IF
                    362: *
                    363: *     Quick return if possible
                    364: *
                    365:       M = 0
                    366:       IF( N.EQ.0 )
                    367:      $   RETURN
                    368: *
                    369:       IF( N.EQ.1 ) THEN
                    370:          M = 1
                    371:          IF( LOWER ) THEN
                    372:             CTMP1 = AB( 1, 1 )
                    373:          ELSE
                    374:             CTMP1 = AB( KD+1, 1 )
                    375:          END IF
                    376:          TMP1 = DBLE( CTMP1 )
                    377:          IF( VALEIG ) THEN
                    378:             IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
                    379:      $         M = 0
                    380:          END IF
                    381:          IF( M.EQ.1 ) THEN
1.18    ! bertrand  382:             W( 1 ) = DBLE( CTMP1 )
1.1       bertrand  383:             IF( WANTZ )
                    384:      $         Z( 1, 1 ) = CONE
                    385:          END IF
                    386:          RETURN
                    387:       END IF
                    388: *
                    389: *     Get machine constants.
                    390: *
                    391:       SAFMIN = DLAMCH( 'Safe minimum' )
                    392:       EPS = DLAMCH( 'Precision' )
                    393:       SMLNUM = SAFMIN / EPS
                    394:       BIGNUM = ONE / SMLNUM
                    395:       RMIN = SQRT( SMLNUM )
                    396:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    397: *
                    398: *     Scale matrix to allowable range, if necessary.
                    399: *
                    400:       ISCALE = 0
                    401:       ABSTLL = ABSTOL
                    402:       IF( VALEIG ) THEN
                    403:          VLL = VL
                    404:          VUU = VU
                    405:       ELSE
                    406:          VLL = ZERO
                    407:          VUU = ZERO
                    408:       END IF
                    409:       ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
                    410:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    411:          ISCALE = 1
                    412:          SIGMA = RMIN / ANRM
                    413:       ELSE IF( ANRM.GT.RMAX ) THEN
                    414:          ISCALE = 1
                    415:          SIGMA = RMAX / ANRM
                    416:       END IF
                    417:       IF( ISCALE.EQ.1 ) THEN
                    418:          IF( LOWER ) THEN
                    419:             CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    420:          ELSE
                    421:             CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    422:          END IF
                    423:          IF( ABSTOL.GT.0 )
                    424:      $      ABSTLL = ABSTOL*SIGMA
                    425:          IF( VALEIG ) THEN
                    426:             VLL = VL*SIGMA
                    427:             VUU = VU*SIGMA
                    428:          END IF
                    429:       END IF
                    430: *
                    431: *     Call ZHBTRD to reduce Hermitian band matrix to tridiagonal form.
                    432: *
                    433:       INDD = 1
                    434:       INDE = INDD + N
                    435:       INDRWK = INDE + N
                    436:       INDWRK = 1
                    437:       CALL ZHBTRD( JOBZ, UPLO, N, KD, AB, LDAB, RWORK( INDD ),
                    438:      $             RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
                    439: *
                    440: *     If all eigenvalues are desired and ABSTOL is less than or equal
                    441: *     to zero, then call DSTERF or ZSTEQR.  If this fails for some
                    442: *     eigenvalue, then try DSTEBZ.
                    443: *
                    444:       TEST = .FALSE.
                    445:       IF (INDEIG) THEN
                    446:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
                    447:             TEST = .TRUE.
                    448:          END IF
                    449:       END IF
                    450:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
                    451:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
                    452:          INDEE = INDRWK + 2*N
                    453:          IF( .NOT.WANTZ ) THEN
                    454:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    455:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
                    456:          ELSE
                    457:             CALL ZLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
                    458:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    459:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
                    460:      $                   RWORK( INDRWK ), INFO )
                    461:             IF( INFO.EQ.0 ) THEN
                    462:                DO 10 I = 1, N
                    463:                   IFAIL( I ) = 0
                    464:    10          CONTINUE
                    465:             END IF
                    466:          END IF
                    467:          IF( INFO.EQ.0 ) THEN
                    468:             M = N
                    469:             GO TO 30
                    470:          END IF
                    471:          INFO = 0
                    472:       END IF
                    473: *
                    474: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
                    475: *
                    476:       IF( WANTZ ) THEN
                    477:          ORDER = 'B'
                    478:       ELSE
                    479:          ORDER = 'E'
                    480:       END IF
                    481:       INDIBL = 1
                    482:       INDISP = INDIBL + N
                    483:       INDIWK = INDISP + N
                    484:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    485:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
                    486:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
                    487:      $             IWORK( INDIWK ), INFO )
                    488: *
                    489:       IF( WANTZ ) THEN
                    490:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
                    491:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    492:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
                    493: *
                    494: *        Apply unitary matrix used in reduction to tridiagonal
                    495: *        form to eigenvectors returned by ZSTEIN.
                    496: *
                    497:          DO 20 J = 1, M
                    498:             CALL ZCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
                    499:             CALL ZGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
                    500:      $                  Z( 1, J ), 1 )
                    501:    20    CONTINUE
                    502:       END IF
                    503: *
                    504: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    505: *
                    506:    30 CONTINUE
                    507:       IF( ISCALE.EQ.1 ) THEN
                    508:          IF( INFO.EQ.0 ) THEN
                    509:             IMAX = M
                    510:          ELSE
                    511:             IMAX = INFO - 1
                    512:          END IF
                    513:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    514:       END IF
                    515: *
                    516: *     If eigenvalues are not in order, then sort them, along with
                    517: *     eigenvectors.
                    518: *
                    519:       IF( WANTZ ) THEN
                    520:          DO 50 J = 1, M - 1
                    521:             I = 0
                    522:             TMP1 = W( J )
                    523:             DO 40 JJ = J + 1, M
                    524:                IF( W( JJ ).LT.TMP1 ) THEN
                    525:                   I = JJ
                    526:                   TMP1 = W( JJ )
                    527:                END IF
                    528:    40       CONTINUE
                    529: *
                    530:             IF( I.NE.0 ) THEN
                    531:                ITMP1 = IWORK( INDIBL+I-1 )
                    532:                W( I ) = W( J )
                    533:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    534:                W( J ) = TMP1
                    535:                IWORK( INDIBL+J-1 ) = ITMP1
                    536:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    537:                IF( INFO.NE.0 ) THEN
                    538:                   ITMP1 = IFAIL( I )
                    539:                   IFAIL( I ) = IFAIL( J )
                    540:                   IFAIL( J ) = ITMP1
                    541:                END IF
                    542:             END IF
                    543:    50    CONTINUE
                    544:       END IF
                    545: *
                    546:       RETURN
                    547: *
                    548: *     End of ZHBEVX
                    549: *
                    550:       END

CVSweb interface <joel.bertrand@systella.fr>