Annotation of rpl/lapack/lapack/zhbevx.f, revision 1.1.1.1

1.1       bertrand    1:       SUBROUTINE ZHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
                      2:      $                   VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
                      3:      $                   IWORK, IFAIL, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBZ, RANGE, UPLO
                     12:       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
                     13:       DOUBLE PRECISION   ABSTOL, VL, VU
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IFAIL( * ), IWORK( * )
                     17:       DOUBLE PRECISION   RWORK( * ), W( * )
                     18:       COMPLEX*16         AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
                     19:      $                   Z( LDZ, * )
                     20: *     ..
                     21: *
                     22: *  Purpose
                     23: *  =======
                     24: *
                     25: *  ZHBEVX computes selected eigenvalues and, optionally, eigenvectors
                     26: *  of a complex Hermitian band matrix A.  Eigenvalues and eigenvectors
                     27: *  can be selected by specifying either a range of values or a range of
                     28: *  indices for the desired eigenvalues.
                     29: *
                     30: *  Arguments
                     31: *  =========
                     32: *
                     33: *  JOBZ    (input) CHARACTER*1
                     34: *          = 'N':  Compute eigenvalues only;
                     35: *          = 'V':  Compute eigenvalues and eigenvectors.
                     36: *
                     37: *  RANGE   (input) CHARACTER*1
                     38: *          = 'A': all eigenvalues will be found;
                     39: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     40: *                 will be found;
                     41: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                     42: *
                     43: *  UPLO    (input) CHARACTER*1
                     44: *          = 'U':  Upper triangle of A is stored;
                     45: *          = 'L':  Lower triangle of A is stored.
                     46: *
                     47: *  N       (input) INTEGER
                     48: *          The order of the matrix A.  N >= 0.
                     49: *
                     50: *  KD      (input) INTEGER
                     51: *          The number of superdiagonals of the matrix A if UPLO = 'U',
                     52: *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                     53: *
                     54: *  AB      (input/output) COMPLEX*16 array, dimension (LDAB, N)
                     55: *          On entry, the upper or lower triangle of the Hermitian band
                     56: *          matrix A, stored in the first KD+1 rows of the array.  The
                     57: *          j-th column of A is stored in the j-th column of the array AB
                     58: *          as follows:
                     59: *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     60: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     61: *
                     62: *          On exit, AB is overwritten by values generated during the
                     63: *          reduction to tridiagonal form.
                     64: *
                     65: *  LDAB    (input) INTEGER
                     66: *          The leading dimension of the array AB.  LDAB >= KD + 1.
                     67: *
                     68: *  Q       (output) COMPLEX*16 array, dimension (LDQ, N)
                     69: *          If JOBZ = 'V', the N-by-N unitary matrix used in the
                     70: *                          reduction to tridiagonal form.
                     71: *          If JOBZ = 'N', the array Q is not referenced.
                     72: *
                     73: *  LDQ     (input) INTEGER
                     74: *          The leading dimension of the array Q.  If JOBZ = 'V', then
                     75: *          LDQ >= max(1,N).
                     76: *
                     77: *  VL      (input) DOUBLE PRECISION
                     78: *  VU      (input) DOUBLE PRECISION
                     79: *          If RANGE='V', the lower and upper bounds of the interval to
                     80: *          be searched for eigenvalues. VL < VU.
                     81: *          Not referenced if RANGE = 'A' or 'I'.
                     82: *
                     83: *  IL      (input) INTEGER
                     84: *  IU      (input) INTEGER
                     85: *          If RANGE='I', the indices (in ascending order) of the
                     86: *          smallest and largest eigenvalues to be returned.
                     87: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                     88: *          Not referenced if RANGE = 'A' or 'V'.
                     89: *
                     90: *  ABSTOL  (input) DOUBLE PRECISION
                     91: *          The absolute error tolerance for the eigenvalues.
                     92: *          An approximate eigenvalue is accepted as converged
                     93: *          when it is determined to lie in an interval [a,b]
                     94: *          of width less than or equal to
                     95: *
                     96: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
                     97: *
                     98: *          where EPS is the machine precision.  If ABSTOL is less than
                     99: *          or equal to zero, then  EPS*|T|  will be used in its place,
                    100: *          where |T| is the 1-norm of the tridiagonal matrix obtained
                    101: *          by reducing AB to tridiagonal form.
                    102: *
                    103: *          Eigenvalues will be computed most accurately when ABSTOL is
                    104: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    105: *          If this routine returns with INFO>0, indicating that some
                    106: *          eigenvectors did not converge, try setting ABSTOL to
                    107: *          2*DLAMCH('S').
                    108: *
                    109: *          See "Computing Small Singular Values of Bidiagonal Matrices
                    110: *          with Guaranteed High Relative Accuracy," by Demmel and
                    111: *          Kahan, LAPACK Working Note #3.
                    112: *
                    113: *  M       (output) INTEGER
                    114: *          The total number of eigenvalues found.  0 <= M <= N.
                    115: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    116: *
                    117: *  W       (output) DOUBLE PRECISION array, dimension (N)
                    118: *          The first M elements contain the selected eigenvalues in
                    119: *          ascending order.
                    120: *
                    121: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
                    122: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    123: *          contain the orthonormal eigenvectors of the matrix A
                    124: *          corresponding to the selected eigenvalues, with the i-th
                    125: *          column of Z holding the eigenvector associated with W(i).
                    126: *          If an eigenvector fails to converge, then that column of Z
                    127: *          contains the latest approximation to the eigenvector, and the
                    128: *          index of the eigenvector is returned in IFAIL.
                    129: *          If JOBZ = 'N', then Z is not referenced.
                    130: *          Note: the user must ensure that at least max(1,M) columns are
                    131: *          supplied in the array Z; if RANGE = 'V', the exact value of M
                    132: *          is not known in advance and an upper bound must be used.
                    133: *
                    134: *  LDZ     (input) INTEGER
                    135: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    136: *          JOBZ = 'V', LDZ >= max(1,N).
                    137: *
                    138: *  WORK    (workspace) COMPLEX*16 array, dimension (N)
                    139: *
                    140: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
                    141: *
                    142: *  IWORK   (workspace) INTEGER array, dimension (5*N)
                    143: *
                    144: *  IFAIL   (output) INTEGER array, dimension (N)
                    145: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    146: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    147: *          indices of the eigenvectors that failed to converge.
                    148: *          If JOBZ = 'N', then IFAIL is not referenced.
                    149: *
                    150: *  INFO    (output) INTEGER
                    151: *          = 0:  successful exit
                    152: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    153: *          > 0:  if INFO = i, then i eigenvectors failed to converge.
                    154: *                Their indices are stored in array IFAIL.
                    155: *
                    156: *  =====================================================================
                    157: *
                    158: *     .. Parameters ..
                    159:       DOUBLE PRECISION   ZERO, ONE
                    160:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    161:       COMPLEX*16         CZERO, CONE
                    162:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
                    163:      $                   CONE = ( 1.0D0, 0.0D0 ) )
                    164: *     ..
                    165: *     .. Local Scalars ..
                    166:       LOGICAL            ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ
                    167:       CHARACTER          ORDER
                    168:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
                    169:      $                   INDISP, INDIWK, INDRWK, INDWRK, ISCALE, ITMP1,
                    170:      $                   J, JJ, NSPLIT
                    171:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    172:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    173:       COMPLEX*16         CTMP1
                    174: *     ..
                    175: *     .. External Functions ..
                    176:       LOGICAL            LSAME
                    177:       DOUBLE PRECISION   DLAMCH, ZLANHB
                    178:       EXTERNAL           LSAME, DLAMCH, ZLANHB
                    179: *     ..
                    180: *     .. External Subroutines ..
                    181:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZCOPY,
                    182:      $                   ZGEMV, ZHBTRD, ZLACPY, ZLASCL, ZSTEIN, ZSTEQR,
                    183:      $                   ZSWAP
                    184: *     ..
                    185: *     .. Intrinsic Functions ..
                    186:       INTRINSIC          DBLE, MAX, MIN, SQRT
                    187: *     ..
                    188: *     .. Executable Statements ..
                    189: *
                    190: *     Test the input parameters.
                    191: *
                    192:       WANTZ = LSAME( JOBZ, 'V' )
                    193:       ALLEIG = LSAME( RANGE, 'A' )
                    194:       VALEIG = LSAME( RANGE, 'V' )
                    195:       INDEIG = LSAME( RANGE, 'I' )
                    196:       LOWER = LSAME( UPLO, 'L' )
                    197: *
                    198:       INFO = 0
                    199:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    200:          INFO = -1
                    201:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    202:          INFO = -2
                    203:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    204:          INFO = -3
                    205:       ELSE IF( N.LT.0 ) THEN
                    206:          INFO = -4
                    207:       ELSE IF( KD.LT.0 ) THEN
                    208:          INFO = -5
                    209:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    210:          INFO = -7
                    211:       ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
                    212:          INFO = -9
                    213:       ELSE
                    214:          IF( VALEIG ) THEN
                    215:             IF( N.GT.0 .AND. VU.LE.VL )
                    216:      $         INFO = -11
                    217:          ELSE IF( INDEIG ) THEN
                    218:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    219:                INFO = -12
                    220:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    221:                INFO = -13
                    222:             END IF
                    223:          END IF
                    224:       END IF
                    225:       IF( INFO.EQ.0 ) THEN
                    226:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
                    227:      $      INFO = -18
                    228:       END IF
                    229: *
                    230:       IF( INFO.NE.0 ) THEN
                    231:          CALL XERBLA( 'ZHBEVX', -INFO )
                    232:          RETURN
                    233:       END IF
                    234: *
                    235: *     Quick return if possible
                    236: *
                    237:       M = 0
                    238:       IF( N.EQ.0 )
                    239:      $   RETURN
                    240: *
                    241:       IF( N.EQ.1 ) THEN
                    242:          M = 1
                    243:          IF( LOWER ) THEN
                    244:             CTMP1 = AB( 1, 1 )
                    245:          ELSE
                    246:             CTMP1 = AB( KD+1, 1 )
                    247:          END IF
                    248:          TMP1 = DBLE( CTMP1 )
                    249:          IF( VALEIG ) THEN
                    250:             IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
                    251:      $         M = 0
                    252:          END IF
                    253:          IF( M.EQ.1 ) THEN
                    254:             W( 1 ) = CTMP1
                    255:             IF( WANTZ )
                    256:      $         Z( 1, 1 ) = CONE
                    257:          END IF
                    258:          RETURN
                    259:       END IF
                    260: *
                    261: *     Get machine constants.
                    262: *
                    263:       SAFMIN = DLAMCH( 'Safe minimum' )
                    264:       EPS = DLAMCH( 'Precision' )
                    265:       SMLNUM = SAFMIN / EPS
                    266:       BIGNUM = ONE / SMLNUM
                    267:       RMIN = SQRT( SMLNUM )
                    268:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    269: *
                    270: *     Scale matrix to allowable range, if necessary.
                    271: *
                    272:       ISCALE = 0
                    273:       ABSTLL = ABSTOL
                    274:       IF( VALEIG ) THEN
                    275:          VLL = VL
                    276:          VUU = VU
                    277:       ELSE
                    278:          VLL = ZERO
                    279:          VUU = ZERO
                    280:       END IF
                    281:       ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
                    282:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    283:          ISCALE = 1
                    284:          SIGMA = RMIN / ANRM
                    285:       ELSE IF( ANRM.GT.RMAX ) THEN
                    286:          ISCALE = 1
                    287:          SIGMA = RMAX / ANRM
                    288:       END IF
                    289:       IF( ISCALE.EQ.1 ) THEN
                    290:          IF( LOWER ) THEN
                    291:             CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    292:          ELSE
                    293:             CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    294:          END IF
                    295:          IF( ABSTOL.GT.0 )
                    296:      $      ABSTLL = ABSTOL*SIGMA
                    297:          IF( VALEIG ) THEN
                    298:             VLL = VL*SIGMA
                    299:             VUU = VU*SIGMA
                    300:          END IF
                    301:       END IF
                    302: *
                    303: *     Call ZHBTRD to reduce Hermitian band matrix to tridiagonal form.
                    304: *
                    305:       INDD = 1
                    306:       INDE = INDD + N
                    307:       INDRWK = INDE + N
                    308:       INDWRK = 1
                    309:       CALL ZHBTRD( JOBZ, UPLO, N, KD, AB, LDAB, RWORK( INDD ),
                    310:      $             RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
                    311: *
                    312: *     If all eigenvalues are desired and ABSTOL is less than or equal
                    313: *     to zero, then call DSTERF or ZSTEQR.  If this fails for some
                    314: *     eigenvalue, then try DSTEBZ.
                    315: *
                    316:       TEST = .FALSE.
                    317:       IF (INDEIG) THEN
                    318:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
                    319:             TEST = .TRUE.
                    320:          END IF
                    321:       END IF
                    322:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
                    323:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
                    324:          INDEE = INDRWK + 2*N
                    325:          IF( .NOT.WANTZ ) THEN
                    326:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    327:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
                    328:          ELSE
                    329:             CALL ZLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
                    330:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    331:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
                    332:      $                   RWORK( INDRWK ), INFO )
                    333:             IF( INFO.EQ.0 ) THEN
                    334:                DO 10 I = 1, N
                    335:                   IFAIL( I ) = 0
                    336:    10          CONTINUE
                    337:             END IF
                    338:          END IF
                    339:          IF( INFO.EQ.0 ) THEN
                    340:             M = N
                    341:             GO TO 30
                    342:          END IF
                    343:          INFO = 0
                    344:       END IF
                    345: *
                    346: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
                    347: *
                    348:       IF( WANTZ ) THEN
                    349:          ORDER = 'B'
                    350:       ELSE
                    351:          ORDER = 'E'
                    352:       END IF
                    353:       INDIBL = 1
                    354:       INDISP = INDIBL + N
                    355:       INDIWK = INDISP + N
                    356:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    357:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
                    358:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
                    359:      $             IWORK( INDIWK ), INFO )
                    360: *
                    361:       IF( WANTZ ) THEN
                    362:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
                    363:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    364:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
                    365: *
                    366: *        Apply unitary matrix used in reduction to tridiagonal
                    367: *        form to eigenvectors returned by ZSTEIN.
                    368: *
                    369:          DO 20 J = 1, M
                    370:             CALL ZCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
                    371:             CALL ZGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
                    372:      $                  Z( 1, J ), 1 )
                    373:    20    CONTINUE
                    374:       END IF
                    375: *
                    376: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    377: *
                    378:    30 CONTINUE
                    379:       IF( ISCALE.EQ.1 ) THEN
                    380:          IF( INFO.EQ.0 ) THEN
                    381:             IMAX = M
                    382:          ELSE
                    383:             IMAX = INFO - 1
                    384:          END IF
                    385:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    386:       END IF
                    387: *
                    388: *     If eigenvalues are not in order, then sort them, along with
                    389: *     eigenvectors.
                    390: *
                    391:       IF( WANTZ ) THEN
                    392:          DO 50 J = 1, M - 1
                    393:             I = 0
                    394:             TMP1 = W( J )
                    395:             DO 40 JJ = J + 1, M
                    396:                IF( W( JJ ).LT.TMP1 ) THEN
                    397:                   I = JJ
                    398:                   TMP1 = W( JJ )
                    399:                END IF
                    400:    40       CONTINUE
                    401: *
                    402:             IF( I.NE.0 ) THEN
                    403:                ITMP1 = IWORK( INDIBL+I-1 )
                    404:                W( I ) = W( J )
                    405:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    406:                W( J ) = TMP1
                    407:                IWORK( INDIBL+J-1 ) = ITMP1
                    408:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    409:                IF( INFO.NE.0 ) THEN
                    410:                   ITMP1 = IFAIL( I )
                    411:                   IFAIL( I ) = IFAIL( J )
                    412:                   IFAIL( J ) = ITMP1
                    413:                END IF
                    414:             END IF
                    415:    50    CONTINUE
                    416:       END IF
                    417: *
                    418:       RETURN
                    419: *
                    420: *     End of ZHBEVX
                    421: *
                    422:       END

CVSweb interface <joel.bertrand@systella.fr>