Annotation of rpl/lapack/lapack/zhbevd_2stage.f, revision 1.1

1.1     ! bertrand    1: *> \brief <b> ZHBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
        !             2: *
        !             3: *  @precisions fortran z -> s d c
        !             4: *
        !             5: *  =========== DOCUMENTATION ===========
        !             6: *
        !             7: * Online html documentation available at
        !             8: *            http://www.netlib.org/lapack/explore-html/
        !             9: *
        !            10: *> \htmlonly
        !            11: *> Download ZHBEVD_2STAGE + dependencies
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbevd_2stage.f">
        !            13: *> [TGZ]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbevd_2stage.f">
        !            15: *> [ZIP]</a>
        !            16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbevd_2stage.f">
        !            17: *> [TXT]</a>
        !            18: *> \endhtmlonly
        !            19: *
        !            20: *  Definition:
        !            21: *  ===========
        !            22: *
        !            23: *       SUBROUTINE ZHBEVD_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
        !            24: *                                 WORK, LWORK, RWORK, LRWORK, IWORK, 
        !            25: *                                 LIWORK, INFO )
        !            26: *
        !            27: *       IMPLICIT NONE
        !            28: *
        !            29: *       .. Scalar Arguments ..
        !            30: *       CHARACTER          JOBZ, UPLO
        !            31: *       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
        !            32: *       ..
        !            33: *       .. Array Arguments ..
        !            34: *       INTEGER            IWORK( * )
        !            35: *       DOUBLE PRECISION   RWORK( * ), W( * )
        !            36: *       COMPLEX*16         AB( LDAB, * ), WORK( * ), Z( LDZ, * )
        !            37: *       ..
        !            38: *
        !            39: *
        !            40: *> \par Purpose:
        !            41: *  =============
        !            42: *>
        !            43: *> \verbatim
        !            44: *>
        !            45: *> ZHBEVD_2STAGE computes all the eigenvalues and, optionally, eigenvectors of
        !            46: *> a complex Hermitian band matrix A using the 2stage technique for
        !            47: *> the reduction to tridiagonal.  If eigenvectors are desired, it
        !            48: *> uses a divide and conquer algorithm.
        !            49: *>
        !            50: *> The divide and conquer algorithm makes very mild assumptions about
        !            51: *> floating point arithmetic. It will work on machines with a guard
        !            52: *> digit in add/subtract, or on those binary machines without guard
        !            53: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            54: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            55: *> without guard digits, but we know of none.
        !            56: *> \endverbatim
        !            57: *
        !            58: *  Arguments:
        !            59: *  ==========
        !            60: *
        !            61: *> \param[in] JOBZ
        !            62: *> \verbatim
        !            63: *>          JOBZ is CHARACTER*1
        !            64: *>          = 'N':  Compute eigenvalues only;
        !            65: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !            66: *>                  Not available in this release.
        !            67: *> \endverbatim
        !            68: *>
        !            69: *> \param[in] UPLO
        !            70: *> \verbatim
        !            71: *>          UPLO is CHARACTER*1
        !            72: *>          = 'U':  Upper triangle of A is stored;
        !            73: *>          = 'L':  Lower triangle of A is stored.
        !            74: *> \endverbatim
        !            75: *>
        !            76: *> \param[in] N
        !            77: *> \verbatim
        !            78: *>          N is INTEGER
        !            79: *>          The order of the matrix A.  N >= 0.
        !            80: *> \endverbatim
        !            81: *>
        !            82: *> \param[in] KD
        !            83: *> \verbatim
        !            84: *>          KD is INTEGER
        !            85: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
        !            86: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
        !            87: *> \endverbatim
        !            88: *>
        !            89: *> \param[in,out] AB
        !            90: *> \verbatim
        !            91: *>          AB is COMPLEX*16 array, dimension (LDAB, N)
        !            92: *>          On entry, the upper or lower triangle of the Hermitian band
        !            93: *>          matrix A, stored in the first KD+1 rows of the array.  The
        !            94: *>          j-th column of A is stored in the j-th column of the array AB
        !            95: *>          as follows:
        !            96: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
        !            97: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
        !            98: *>
        !            99: *>          On exit, AB is overwritten by values generated during the
        !           100: *>          reduction to tridiagonal form.  If UPLO = 'U', the first
        !           101: *>          superdiagonal and the diagonal of the tridiagonal matrix T
        !           102: *>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
        !           103: *>          the diagonal and first subdiagonal of T are returned in the
        !           104: *>          first two rows of AB.
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[in] LDAB
        !           108: *> \verbatim
        !           109: *>          LDAB is INTEGER
        !           110: *>          The leading dimension of the array AB.  LDAB >= KD + 1.
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[out] W
        !           114: *> \verbatim
        !           115: *>          W is DOUBLE PRECISION array, dimension (N)
        !           116: *>          If INFO = 0, the eigenvalues in ascending order.
        !           117: *> \endverbatim
        !           118: *>
        !           119: *> \param[out] Z
        !           120: *> \verbatim
        !           121: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
        !           122: *>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
        !           123: *>          eigenvectors of the matrix A, with the i-th column of Z
        !           124: *>          holding the eigenvector associated with W(i).
        !           125: *>          If JOBZ = 'N', then Z is not referenced.
        !           126: *> \endverbatim
        !           127: *>
        !           128: *> \param[in] LDZ
        !           129: *> \verbatim
        !           130: *>          LDZ is INTEGER
        !           131: *>          The leading dimension of the array Z.  LDZ >= 1, and if
        !           132: *>          JOBZ = 'V', LDZ >= max(1,N).
        !           133: *> \endverbatim
        !           134: *>
        !           135: *> \param[out] WORK
        !           136: *> \verbatim
        !           137: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           138: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           139: *> \endverbatim
        !           140: *>
        !           141: *> \param[in] LWORK
        !           142: *> \verbatim
        !           143: *>          LWORK is INTEGER
        !           144: *>          The length of the array WORK. LWORK >= 1, when N <= 1;
        !           145: *>          otherwise  
        !           146: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
        !           147: *>                                   LWORK = MAX(1, dimension) where
        !           148: *>                                   dimension = (2KD+1)*N + KD*NTHREADS
        !           149: *>                                   where KD is the size of the band.
        !           150: *>                                   NTHREADS is the number of threads used when
        !           151: *>                                   openMP compilation is enabled, otherwise =1.
        !           152: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
        !           153: *>
        !           154: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           155: *>          only calculates the optimal sizes of the WORK, RWORK and
        !           156: *>          IWORK arrays, returns these values as the first entries of
        !           157: *>          the WORK, RWORK and IWORK arrays, and no error message
        !           158: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           159: *> \endverbatim
        !           160: *>
        !           161: *> \param[out] RWORK
        !           162: *> \verbatim
        !           163: *>          RWORK is DOUBLE PRECISION array,
        !           164: *>                                         dimension (LRWORK)
        !           165: *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
        !           166: *> \endverbatim
        !           167: *>
        !           168: *> \param[in] LRWORK
        !           169: *> \verbatim
        !           170: *>          LRWORK is INTEGER
        !           171: *>          The dimension of array RWORK.
        !           172: *>          If N <= 1,               LRWORK must be at least 1.
        !           173: *>          If JOBZ = 'N' and N > 1, LRWORK must be at least N.
        !           174: *>          If JOBZ = 'V' and N > 1, LRWORK must be at least
        !           175: *>                        1 + 5*N + 2*N**2.
        !           176: *>
        !           177: *>          If LRWORK = -1, then a workspace query is assumed; the
        !           178: *>          routine only calculates the optimal sizes of the WORK, RWORK
        !           179: *>          and IWORK arrays, returns these values as the first entries
        !           180: *>          of the WORK, RWORK and IWORK arrays, and no error message
        !           181: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           182: *> \endverbatim
        !           183: *>
        !           184: *> \param[out] IWORK
        !           185: *> \verbatim
        !           186: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
        !           187: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           188: *> \endverbatim
        !           189: *>
        !           190: *> \param[in] LIWORK
        !           191: *> \verbatim
        !           192: *>          LIWORK is INTEGER
        !           193: *>          The dimension of array IWORK.
        !           194: *>          If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
        !           195: *>          If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N .
        !           196: *>
        !           197: *>          If LIWORK = -1, then a workspace query is assumed; the
        !           198: *>          routine only calculates the optimal sizes of the WORK, RWORK
        !           199: *>          and IWORK arrays, returns these values as the first entries
        !           200: *>          of the WORK, RWORK and IWORK arrays, and no error message
        !           201: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           202: *> \endverbatim
        !           203: *>
        !           204: *> \param[out] INFO
        !           205: *> \verbatim
        !           206: *>          INFO is INTEGER
        !           207: *>          = 0:  successful exit.
        !           208: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           209: *>          > 0:  if INFO = i, the algorithm failed to converge; i
        !           210: *>                off-diagonal elements of an intermediate tridiagonal
        !           211: *>                form did not converge to zero.
        !           212: *> \endverbatim
        !           213: *
        !           214: *  Authors:
        !           215: *  ========
        !           216: *
        !           217: *> \author Univ. of Tennessee
        !           218: *> \author Univ. of California Berkeley
        !           219: *> \author Univ. of Colorado Denver
        !           220: *> \author NAG Ltd.
        !           221: *
        !           222: *> \date December 2016
        !           223: *
        !           224: *> \ingroup complex16OTHEReigen
        !           225: *
        !           226: *> \par Further Details:
        !           227: *  =====================
        !           228: *>
        !           229: *> \verbatim
        !           230: *>
        !           231: *>  All details about the 2stage techniques are available in:
        !           232: *>
        !           233: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
        !           234: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
        !           235: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
        !           236: *>  of 2011 International Conference for High Performance Computing,
        !           237: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
        !           238: *>  Article 8 , 11 pages.
        !           239: *>  http://doi.acm.org/10.1145/2063384.2063394
        !           240: *>
        !           241: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
        !           242: *>  An improved parallel singular value algorithm and its implementation 
        !           243: *>  for multicore hardware, In Proceedings of 2013 International Conference
        !           244: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
        !           245: *>  Denver, Colorado, USA, 2013.
        !           246: *>  Article 90, 12 pages.
        !           247: *>  http://doi.acm.org/10.1145/2503210.2503292
        !           248: *>
        !           249: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
        !           250: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
        !           251: *>  calculations based on fine-grained memory aware tasks.
        !           252: *>  International Journal of High Performance Computing Applications.
        !           253: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
        !           254: *>  http://hpc.sagepub.com/content/28/2/196 
        !           255: *>
        !           256: *> \endverbatim
        !           257: *
        !           258: *  =====================================================================
        !           259:       SUBROUTINE ZHBEVD_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
        !           260:      $                          WORK, LWORK, RWORK, LRWORK, IWORK, 
        !           261:      $                          LIWORK, INFO )
        !           262: *
        !           263:       IMPLICIT NONE
        !           264: *
        !           265: *  -- LAPACK driver routine (version 3.7.0) --
        !           266: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           267: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           268: *     December 2016
        !           269: *
        !           270: *     .. Scalar Arguments ..
        !           271:       CHARACTER          JOBZ, UPLO
        !           272:       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
        !           273: *     ..
        !           274: *     .. Array Arguments ..
        !           275:       INTEGER            IWORK( * )
        !           276:       DOUBLE PRECISION   RWORK( * ), W( * )
        !           277:       COMPLEX*16         AB( LDAB, * ), WORK( * ), Z( LDZ, * )
        !           278: *     ..
        !           279: *
        !           280: *  =====================================================================
        !           281: *
        !           282: *     .. Parameters ..
        !           283:       DOUBLE PRECISION   ZERO, ONE
        !           284:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           285:       COMPLEX*16         CZERO, CONE
        !           286:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
        !           287:      $                   CONE = ( 1.0D0, 0.0D0 ) )
        !           288: *     ..
        !           289: *     .. Local Scalars ..
        !           290:       LOGICAL            LOWER, LQUERY, WANTZ
        !           291:       INTEGER            IINFO, IMAX, INDE, INDWK2, INDRWK, ISCALE,
        !           292:      $                   LLWORK, INDWK, LHTRD, LWTRD, IB, INDHOUS,
        !           293:      $                   LIWMIN, LLRWK, LLWK2, LRWMIN, LWMIN
        !           294:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
        !           295:      $                   SMLNUM
        !           296: *     ..
        !           297: *     .. External Functions ..
        !           298:       LOGICAL            LSAME
        !           299:       INTEGER            ILAENV
        !           300:       DOUBLE PRECISION   DLAMCH, ZLANHB
        !           301:       EXTERNAL           LSAME, DLAMCH, ZLANHB, ILAENV
        !           302: *     ..
        !           303: *     .. External Subroutines ..
        !           304:       EXTERNAL           DSCAL, DSTERF, XERBLA, ZGEMM, ZLACPY,
        !           305:      $                   ZLASCL, ZSTEDC, ZHETRD_HB2ST
        !           306: *     ..
        !           307: *     .. Intrinsic Functions ..
        !           308:       INTRINSIC          DBLE, SQRT
        !           309: *     ..
        !           310: *     .. Executable Statements ..
        !           311: *
        !           312: *     Test the input parameters.
        !           313: *
        !           314:       WANTZ = LSAME( JOBZ, 'V' )
        !           315:       LOWER = LSAME( UPLO, 'L' )
        !           316:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
        !           317: *
        !           318:       INFO = 0
        !           319:       IF( N.LE.1 ) THEN
        !           320:          LWMIN = 1
        !           321:          LRWMIN = 1
        !           322:          LIWMIN = 1
        !           323:       ELSE
        !           324:          IB    = ILAENV( 18, 'ZHETRD_HB2ST', JOBZ, N, KD, -1, -1 )
        !           325:          LHTRD = ILAENV( 19, 'ZHETRD_HB2ST', JOBZ, N, KD, IB, -1 )
        !           326:          LWTRD = ILAENV( 20, 'ZHETRD_HB2ST', JOBZ, N, KD, IB, -1 )
        !           327:          IF( WANTZ ) THEN
        !           328:             LWMIN = 2*N**2
        !           329:             LRWMIN = 1 + 5*N + 2*N**2
        !           330:             LIWMIN = 3 + 5*N
        !           331:          ELSE
        !           332:             LWMIN  = MAX( N, LHTRD + LWTRD )
        !           333:             LRWMIN = N
        !           334:             LIWMIN = 1
        !           335:          END IF
        !           336:       END IF
        !           337:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
        !           338:          INFO = -1
        !           339:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
        !           340:          INFO = -2
        !           341:       ELSE IF( N.LT.0 ) THEN
        !           342:          INFO = -3
        !           343:       ELSE IF( KD.LT.0 ) THEN
        !           344:          INFO = -4
        !           345:       ELSE IF( LDAB.LT.KD+1 ) THEN
        !           346:          INFO = -6
        !           347:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           348:          INFO = -9
        !           349:       END IF
        !           350: *
        !           351:       IF( INFO.EQ.0 ) THEN
        !           352:          WORK( 1 )  = LWMIN
        !           353:          RWORK( 1 ) = LRWMIN
        !           354:          IWORK( 1 ) = LIWMIN
        !           355: *
        !           356:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           357:             INFO = -11
        !           358:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
        !           359:             INFO = -13
        !           360:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           361:             INFO = -15
        !           362:          END IF
        !           363:       END IF
        !           364: *
        !           365:       IF( INFO.NE.0 ) THEN
        !           366:          CALL XERBLA( 'ZHBEVD_2STAGE', -INFO )
        !           367:          RETURN
        !           368:       ELSE IF( LQUERY ) THEN
        !           369:          RETURN
        !           370:       END IF
        !           371: *
        !           372: *     Quick return if possible
        !           373: *
        !           374:       IF( N.EQ.0 )
        !           375:      $   RETURN
        !           376: *
        !           377:       IF( N.EQ.1 ) THEN
        !           378:          W( 1 ) = DBLE( AB( 1, 1 ) )
        !           379:          IF( WANTZ )
        !           380:      $      Z( 1, 1 ) = CONE
        !           381:          RETURN
        !           382:       END IF
        !           383: *
        !           384: *     Get machine constants.
        !           385: *
        !           386:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           387:       EPS    = DLAMCH( 'Precision' )
        !           388:       SMLNUM = SAFMIN / EPS
        !           389:       BIGNUM = ONE / SMLNUM
        !           390:       RMIN   = SQRT( SMLNUM )
        !           391:       RMAX   = SQRT( BIGNUM )
        !           392: *
        !           393: *     Scale matrix to allowable range, if necessary.
        !           394: *
        !           395:       ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
        !           396:       ISCALE = 0
        !           397:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
        !           398:          ISCALE = 1
        !           399:          SIGMA = RMIN / ANRM
        !           400:       ELSE IF( ANRM.GT.RMAX ) THEN
        !           401:          ISCALE = 1
        !           402:          SIGMA = RMAX / ANRM
        !           403:       END IF
        !           404:       IF( ISCALE.EQ.1 ) THEN
        !           405:          IF( LOWER ) THEN
        !           406:             CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
        !           407:          ELSE
        !           408:             CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
        !           409:          END IF
        !           410:       END IF
        !           411: *
        !           412: *     Call ZHBTRD_HB2ST to reduce Hermitian band matrix to tridiagonal form.
        !           413: *
        !           414:       INDE    = 1
        !           415:       INDRWK  = INDE + N
        !           416:       LLRWK   = LRWORK - INDRWK + 1
        !           417:       INDHOUS = 1
        !           418:       INDWK   = INDHOUS + LHTRD
        !           419:       LLWORK  = LWORK - INDWK + 1
        !           420:       INDWK2  = INDWK + N*N
        !           421:       LLWK2   = LWORK - INDWK2 + 1
        !           422: *
        !           423:       CALL ZHETRD_HB2ST( "N", JOBZ, UPLO, N, KD, AB, LDAB, W,
        !           424:      $                    RWORK( INDE ), WORK( INDHOUS ), LHTRD, 
        !           425:      $                    WORK( INDWK ), LLWORK, IINFO )
        !           426: *
        !           427: *     For eigenvalues only, call DSTERF.  For eigenvectors, call ZSTEDC.
        !           428: *
        !           429:       IF( .NOT.WANTZ ) THEN
        !           430:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
        !           431:       ELSE
        !           432:          CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK, N, WORK( INDWK2 ),
        !           433:      $                LLWK2, RWORK( INDRWK ), LLRWK, IWORK, LIWORK,
        !           434:      $                INFO )
        !           435:          CALL ZGEMM( 'N', 'N', N, N, N, CONE, Z, LDZ, WORK, N, CZERO,
        !           436:      $               WORK( INDWK2 ), N )
        !           437:          CALL ZLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
        !           438:       END IF
        !           439: *
        !           440: *     If matrix was scaled, then rescale eigenvalues appropriately.
        !           441: *
        !           442:       IF( ISCALE.EQ.1 ) THEN
        !           443:          IF( INFO.EQ.0 ) THEN
        !           444:             IMAX = N
        !           445:          ELSE
        !           446:             IMAX = INFO - 1
        !           447:          END IF
        !           448:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
        !           449:       END IF
        !           450: *
        !           451:       WORK( 1 )  = LWMIN
        !           452:       RWORK( 1 ) = LRWMIN
        !           453:       IWORK( 1 ) = LIWMIN
        !           454:       RETURN
        !           455: *
        !           456: *     End of ZHBEVD_2STAGE
        !           457: *
        !           458:       END

CVSweb interface <joel.bertrand@systella.fr>