Annotation of rpl/lapack/lapack/zhbevd.f, revision 1.17

1.8       bertrand    1: *> \brief <b> ZHBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download ZHBEVD + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbevd.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbevd.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbevd.f">
1.8       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
                     22: *                          LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
1.14      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBZ, UPLO
                     26: *       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IWORK( * )
                     30: *       DOUBLE PRECISION   RWORK( * ), W( * )
                     31: *       COMPLEX*16         AB( LDAB, * ), WORK( * ), Z( LDZ, * )
                     32: *       ..
1.14      bertrand   33: *
1.8       bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> ZHBEVD computes all the eigenvalues and, optionally, eigenvectors of
                     41: *> a complex Hermitian band matrix A.  If eigenvectors are desired, it
                     42: *> uses a divide and conquer algorithm.
                     43: *>
                     44: *> The divide and conquer algorithm makes very mild assumptions about
                     45: *> floating point arithmetic. It will work on machines with a guard
                     46: *> digit in add/subtract, or on those binary machines without guard
                     47: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     48: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     49: *> without guard digits, but we know of none.
                     50: *> \endverbatim
                     51: *
                     52: *  Arguments:
                     53: *  ==========
                     54: *
                     55: *> \param[in] JOBZ
                     56: *> \verbatim
                     57: *>          JOBZ is CHARACTER*1
                     58: *>          = 'N':  Compute eigenvalues only;
                     59: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     60: *> \endverbatim
                     61: *>
                     62: *> \param[in] UPLO
                     63: *> \verbatim
                     64: *>          UPLO is CHARACTER*1
                     65: *>          = 'U':  Upper triangle of A is stored;
                     66: *>          = 'L':  Lower triangle of A is stored.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] N
                     70: *> \verbatim
                     71: *>          N is INTEGER
                     72: *>          The order of the matrix A.  N >= 0.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] KD
                     76: *> \verbatim
                     77: *>          KD is INTEGER
                     78: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
                     79: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in,out] AB
                     83: *> \verbatim
                     84: *>          AB is COMPLEX*16 array, dimension (LDAB, N)
                     85: *>          On entry, the upper or lower triangle of the Hermitian band
                     86: *>          matrix A, stored in the first KD+1 rows of the array.  The
                     87: *>          j-th column of A is stored in the j-th column of the array AB
                     88: *>          as follows:
                     89: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     90: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     91: *>
                     92: *>          On exit, AB is overwritten by values generated during the
                     93: *>          reduction to tridiagonal form.  If UPLO = 'U', the first
                     94: *>          superdiagonal and the diagonal of the tridiagonal matrix T
                     95: *>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
                     96: *>          the diagonal and first subdiagonal of T are returned in the
                     97: *>          first two rows of AB.
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] LDAB
                    101: *> \verbatim
                    102: *>          LDAB is INTEGER
                    103: *>          The leading dimension of the array AB.  LDAB >= KD + 1.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[out] W
                    107: *> \verbatim
                    108: *>          W is DOUBLE PRECISION array, dimension (N)
                    109: *>          If INFO = 0, the eigenvalues in ascending order.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[out] Z
                    113: *> \verbatim
                    114: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
                    115: *>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                    116: *>          eigenvectors of the matrix A, with the i-th column of Z
                    117: *>          holding the eigenvector associated with W(i).
                    118: *>          If JOBZ = 'N', then Z is not referenced.
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in] LDZ
                    122: *> \verbatim
                    123: *>          LDZ is INTEGER
                    124: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    125: *>          JOBZ = 'V', LDZ >= max(1,N).
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[out] WORK
                    129: *> \verbatim
                    130: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    131: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in] LWORK
                    135: *> \verbatim
                    136: *>          LWORK is INTEGER
                    137: *>          The dimension of the array WORK.
                    138: *>          If N <= 1,               LWORK must be at least 1.
                    139: *>          If JOBZ = 'N' and N > 1, LWORK must be at least N.
                    140: *>          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N**2.
                    141: *>
                    142: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    143: *>          only calculates the optimal sizes of the WORK, RWORK and
                    144: *>          IWORK arrays, returns these values as the first entries of
                    145: *>          the WORK, RWORK and IWORK arrays, and no error message
                    146: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    147: *> \endverbatim
                    148: *>
                    149: *> \param[out] RWORK
                    150: *> \verbatim
                    151: *>          RWORK is DOUBLE PRECISION array,
                    152: *>                                         dimension (LRWORK)
                    153: *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[in] LRWORK
                    157: *> \verbatim
                    158: *>          LRWORK is INTEGER
                    159: *>          The dimension of array RWORK.
                    160: *>          If N <= 1,               LRWORK must be at least 1.
                    161: *>          If JOBZ = 'N' and N > 1, LRWORK must be at least N.
                    162: *>          If JOBZ = 'V' and N > 1, LRWORK must be at least
                    163: *>                        1 + 5*N + 2*N**2.
                    164: *>
                    165: *>          If LRWORK = -1, then a workspace query is assumed; the
                    166: *>          routine only calculates the optimal sizes of the WORK, RWORK
                    167: *>          and IWORK arrays, returns these values as the first entries
                    168: *>          of the WORK, RWORK and IWORK arrays, and no error message
                    169: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[out] IWORK
                    173: *> \verbatim
                    174: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    175: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[in] LIWORK
                    179: *> \verbatim
                    180: *>          LIWORK is INTEGER
                    181: *>          The dimension of array IWORK.
                    182: *>          If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
                    183: *>          If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N .
                    184: *>
                    185: *>          If LIWORK = -1, then a workspace query is assumed; the
                    186: *>          routine only calculates the optimal sizes of the WORK, RWORK
                    187: *>          and IWORK arrays, returns these values as the first entries
                    188: *>          of the WORK, RWORK and IWORK arrays, and no error message
                    189: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    190: *> \endverbatim
                    191: *>
                    192: *> \param[out] INFO
                    193: *> \verbatim
                    194: *>          INFO is INTEGER
                    195: *>          = 0:  successful exit.
                    196: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    197: *>          > 0:  if INFO = i, the algorithm failed to converge; i
                    198: *>                off-diagonal elements of an intermediate tridiagonal
                    199: *>                form did not converge to zero.
                    200: *> \endverbatim
                    201: *
                    202: *  Authors:
                    203: *  ========
                    204: *
1.14      bertrand  205: *> \author Univ. of Tennessee
                    206: *> \author Univ. of California Berkeley
                    207: *> \author Univ. of Colorado Denver
                    208: *> \author NAG Ltd.
1.8       bertrand  209: *
                    210: *> \ingroup complex16OTHEReigen
                    211: *
                    212: *  =====================================================================
1.1       bertrand  213:       SUBROUTINE ZHBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
                    214:      $                   LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
                    215: *
1.17    ! bertrand  216: *  -- LAPACK driver routine --
1.1       bertrand  217: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    218: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    219: *
                    220: *     .. Scalar Arguments ..
                    221:       CHARACTER          JOBZ, UPLO
                    222:       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
                    223: *     ..
                    224: *     .. Array Arguments ..
                    225:       INTEGER            IWORK( * )
                    226:       DOUBLE PRECISION   RWORK( * ), W( * )
                    227:       COMPLEX*16         AB( LDAB, * ), WORK( * ), Z( LDZ, * )
                    228: *     ..
                    229: *
                    230: *  =====================================================================
                    231: *
                    232: *     .. Parameters ..
                    233:       DOUBLE PRECISION   ZERO, ONE
                    234:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    235:       COMPLEX*16         CZERO, CONE
                    236:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
                    237:      $                   CONE = ( 1.0D0, 0.0D0 ) )
                    238: *     ..
                    239: *     .. Local Scalars ..
                    240:       LOGICAL            LOWER, LQUERY, WANTZ
                    241:       INTEGER            IINFO, IMAX, INDE, INDWK2, INDWRK, ISCALE,
                    242:      $                   LIWMIN, LLRWK, LLWK2, LRWMIN, LWMIN
                    243:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
                    244:      $                   SMLNUM
                    245: *     ..
                    246: *     .. External Functions ..
                    247:       LOGICAL            LSAME
                    248:       DOUBLE PRECISION   DLAMCH, ZLANHB
                    249:       EXTERNAL           LSAME, DLAMCH, ZLANHB
                    250: *     ..
                    251: *     .. External Subroutines ..
                    252:       EXTERNAL           DSCAL, DSTERF, XERBLA, ZGEMM, ZHBTRD, ZLACPY,
                    253:      $                   ZLASCL, ZSTEDC
                    254: *     ..
                    255: *     .. Intrinsic Functions ..
                    256:       INTRINSIC          SQRT
                    257: *     ..
                    258: *     .. Executable Statements ..
                    259: *
                    260: *     Test the input parameters.
                    261: *
                    262:       WANTZ = LSAME( JOBZ, 'V' )
                    263:       LOWER = LSAME( UPLO, 'L' )
                    264:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
                    265: *
                    266:       INFO = 0
                    267:       IF( N.LE.1 ) THEN
                    268:          LWMIN = 1
                    269:          LRWMIN = 1
                    270:          LIWMIN = 1
                    271:       ELSE
                    272:          IF( WANTZ ) THEN
                    273:             LWMIN = 2*N**2
                    274:             LRWMIN = 1 + 5*N + 2*N**2
                    275:             LIWMIN = 3 + 5*N
                    276:          ELSE
                    277:             LWMIN = N
                    278:             LRWMIN = N
                    279:             LIWMIN = 1
                    280:          END IF
                    281:       END IF
                    282:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    283:          INFO = -1
                    284:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    285:          INFO = -2
                    286:       ELSE IF( N.LT.0 ) THEN
                    287:          INFO = -3
                    288:       ELSE IF( KD.LT.0 ) THEN
                    289:          INFO = -4
                    290:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    291:          INFO = -6
                    292:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    293:          INFO = -9
                    294:       END IF
                    295: *
                    296:       IF( INFO.EQ.0 ) THEN
                    297:          WORK( 1 ) = LWMIN
                    298:          RWORK( 1 ) = LRWMIN
                    299:          IWORK( 1 ) = LIWMIN
                    300: *
                    301:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    302:             INFO = -11
                    303:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
                    304:             INFO = -13
                    305:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    306:             INFO = -15
                    307:          END IF
                    308:       END IF
                    309: *
                    310:       IF( INFO.NE.0 ) THEN
                    311:          CALL XERBLA( 'ZHBEVD', -INFO )
                    312:          RETURN
                    313:       ELSE IF( LQUERY ) THEN
                    314:          RETURN
                    315:       END IF
                    316: *
                    317: *     Quick return if possible
                    318: *
                    319:       IF( N.EQ.0 )
                    320:      $   RETURN
                    321: *
                    322:       IF( N.EQ.1 ) THEN
1.17    ! bertrand  323:          W( 1 ) = DBLE( AB( 1, 1 ) )
1.1       bertrand  324:          IF( WANTZ )
                    325:      $      Z( 1, 1 ) = CONE
                    326:          RETURN
                    327:       END IF
                    328: *
                    329: *     Get machine constants.
                    330: *
                    331:       SAFMIN = DLAMCH( 'Safe minimum' )
                    332:       EPS = DLAMCH( 'Precision' )
                    333:       SMLNUM = SAFMIN / EPS
                    334:       BIGNUM = ONE / SMLNUM
                    335:       RMIN = SQRT( SMLNUM )
                    336:       RMAX = SQRT( BIGNUM )
                    337: *
                    338: *     Scale matrix to allowable range, if necessary.
                    339: *
                    340:       ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
                    341:       ISCALE = 0
                    342:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    343:          ISCALE = 1
                    344:          SIGMA = RMIN / ANRM
                    345:       ELSE IF( ANRM.GT.RMAX ) THEN
                    346:          ISCALE = 1
                    347:          SIGMA = RMAX / ANRM
                    348:       END IF
                    349:       IF( ISCALE.EQ.1 ) THEN
                    350:          IF( LOWER ) THEN
                    351:             CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    352:          ELSE
                    353:             CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    354:          END IF
                    355:       END IF
                    356: *
                    357: *     Call ZHBTRD to reduce Hermitian band matrix to tridiagonal form.
                    358: *
                    359:       INDE = 1
                    360:       INDWRK = INDE + N
                    361:       INDWK2 = 1 + N*N
                    362:       LLWK2 = LWORK - INDWK2 + 1
                    363:       LLRWK = LRWORK - INDWRK + 1
                    364:       CALL ZHBTRD( JOBZ, UPLO, N, KD, AB, LDAB, W, RWORK( INDE ), Z,
                    365:      $             LDZ, WORK, IINFO )
                    366: *
                    367: *     For eigenvalues only, call DSTERF.  For eigenvectors, call ZSTEDC.
                    368: *
                    369:       IF( .NOT.WANTZ ) THEN
                    370:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
                    371:       ELSE
                    372:          CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK, N, WORK( INDWK2 ),
                    373:      $                LLWK2, RWORK( INDWRK ), LLRWK, IWORK, LIWORK,
                    374:      $                INFO )
                    375:          CALL ZGEMM( 'N', 'N', N, N, N, CONE, Z, LDZ, WORK, N, CZERO,
                    376:      $               WORK( INDWK2 ), N )
                    377:          CALL ZLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
                    378:       END IF
                    379: *
                    380: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    381: *
                    382:       IF( ISCALE.EQ.1 ) THEN
                    383:          IF( INFO.EQ.0 ) THEN
                    384:             IMAX = N
                    385:          ELSE
                    386:             IMAX = INFO - 1
                    387:          END IF
                    388:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    389:       END IF
                    390: *
                    391:       WORK( 1 ) = LWMIN
                    392:       RWORK( 1 ) = LRWMIN
                    393:       IWORK( 1 ) = LIWMIN
                    394:       RETURN
                    395: *
                    396: *     End of ZHBEVD
                    397: *
                    398:       END

CVSweb interface <joel.bertrand@systella.fr>