File:  [local] / rpl / lapack / lapack / zgtsvx.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:31 2012 UTC (11 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b ZGTSVX
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZGTSVX + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgtsvx.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgtsvx.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgtsvx.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
   22: *                          DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
   23: *                          WORK, RWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          FACT, TRANS
   27: *       INTEGER            INFO, LDB, LDX, N, NRHS
   28: *       DOUBLE PRECISION   RCOND
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IPIV( * )
   32: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   33: *       COMPLEX*16         B( LDB, * ), D( * ), DF( * ), DL( * ),
   34: *      $                   DLF( * ), DU( * ), DU2( * ), DUF( * ),
   35: *      $                   WORK( * ), X( LDX, * )
   36: *       ..
   37: *  
   38: *
   39: *> \par Purpose:
   40: *  =============
   41: *>
   42: *> \verbatim
   43: *>
   44: *> ZGTSVX uses the LU factorization to compute the solution to a complex
   45: *> system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
   46: *> where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
   47: *> matrices.
   48: *>
   49: *> Error bounds on the solution and a condition estimate are also
   50: *> provided.
   51: *> \endverbatim
   52: *
   53: *> \par Description:
   54: *  =================
   55: *>
   56: *> \verbatim
   57: *>
   58: *> The following steps are performed:
   59: *>
   60: *> 1. If FACT = 'N', the LU decomposition is used to factor the matrix A
   61: *>    as A = L * U, where L is a product of permutation and unit lower
   62: *>    bidiagonal matrices and U is upper triangular with nonzeros in
   63: *>    only the main diagonal and first two superdiagonals.
   64: *>
   65: *> 2. If some U(i,i)=0, so that U is exactly singular, then the routine
   66: *>    returns with INFO = i. Otherwise, the factored form of A is used
   67: *>    to estimate the condition number of the matrix A.  If the
   68: *>    reciprocal of the condition number is less than machine precision,
   69: *>    INFO = N+1 is returned as a warning, but the routine still goes on
   70: *>    to solve for X and compute error bounds as described below.
   71: *>
   72: *> 3. The system of equations is solved for X using the factored form
   73: *>    of A.
   74: *>
   75: *> 4. Iterative refinement is applied to improve the computed solution
   76: *>    matrix and calculate error bounds and backward error estimates
   77: *>    for it.
   78: *> \endverbatim
   79: *
   80: *  Arguments:
   81: *  ==========
   82: *
   83: *> \param[in] FACT
   84: *> \verbatim
   85: *>          FACT is CHARACTER*1
   86: *>          Specifies whether or not the factored form of A has been
   87: *>          supplied on entry.
   88: *>          = 'F':  DLF, DF, DUF, DU2, and IPIV contain the factored form
   89: *>                  of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV will not
   90: *>                  be modified.
   91: *>          = 'N':  The matrix will be copied to DLF, DF, and DUF
   92: *>                  and factored.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] TRANS
   96: *> \verbatim
   97: *>          TRANS is CHARACTER*1
   98: *>          Specifies the form of the system of equations:
   99: *>          = 'N':  A * X = B     (No transpose)
  100: *>          = 'T':  A**T * X = B  (Transpose)
  101: *>          = 'C':  A**H * X = B  (Conjugate transpose)
  102: *> \endverbatim
  103: *>
  104: *> \param[in] N
  105: *> \verbatim
  106: *>          N is INTEGER
  107: *>          The order of the matrix A.  N >= 0.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] NRHS
  111: *> \verbatim
  112: *>          NRHS is INTEGER
  113: *>          The number of right hand sides, i.e., the number of columns
  114: *>          of the matrix B.  NRHS >= 0.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] DL
  118: *> \verbatim
  119: *>          DL is COMPLEX*16 array, dimension (N-1)
  120: *>          The (n-1) subdiagonal elements of A.
  121: *> \endverbatim
  122: *>
  123: *> \param[in] D
  124: *> \verbatim
  125: *>          D is COMPLEX*16 array, dimension (N)
  126: *>          The n diagonal elements of A.
  127: *> \endverbatim
  128: *>
  129: *> \param[in] DU
  130: *> \verbatim
  131: *>          DU is COMPLEX*16 array, dimension (N-1)
  132: *>          The (n-1) superdiagonal elements of A.
  133: *> \endverbatim
  134: *>
  135: *> \param[in,out] DLF
  136: *> \verbatim
  137: *>          DLF is COMPLEX*16 array, dimension (N-1)
  138: *>          If FACT = 'F', then DLF is an input argument and on entry
  139: *>          contains the (n-1) multipliers that define the matrix L from
  140: *>          the LU factorization of A as computed by ZGTTRF.
  141: *>
  142: *>          If FACT = 'N', then DLF is an output argument and on exit
  143: *>          contains the (n-1) multipliers that define the matrix L from
  144: *>          the LU factorization of A.
  145: *> \endverbatim
  146: *>
  147: *> \param[in,out] DF
  148: *> \verbatim
  149: *>          DF is COMPLEX*16 array, dimension (N)
  150: *>          If FACT = 'F', then DF is an input argument and on entry
  151: *>          contains the n diagonal elements of the upper triangular
  152: *>          matrix U from the LU factorization of A.
  153: *>
  154: *>          If FACT = 'N', then DF is an output argument and on exit
  155: *>          contains the n diagonal elements of the upper triangular
  156: *>          matrix U from the LU factorization of A.
  157: *> \endverbatim
  158: *>
  159: *> \param[in,out] DUF
  160: *> \verbatim
  161: *>          DUF is COMPLEX*16 array, dimension (N-1)
  162: *>          If FACT = 'F', then DUF is an input argument and on entry
  163: *>          contains the (n-1) elements of the first superdiagonal of U.
  164: *>
  165: *>          If FACT = 'N', then DUF is an output argument and on exit
  166: *>          contains the (n-1) elements of the first superdiagonal of U.
  167: *> \endverbatim
  168: *>
  169: *> \param[in,out] DU2
  170: *> \verbatim
  171: *>          DU2 is COMPLEX*16 array, dimension (N-2)
  172: *>          If FACT = 'F', then DU2 is an input argument and on entry
  173: *>          contains the (n-2) elements of the second superdiagonal of
  174: *>          U.
  175: *>
  176: *>          If FACT = 'N', then DU2 is an output argument and on exit
  177: *>          contains the (n-2) elements of the second superdiagonal of
  178: *>          U.
  179: *> \endverbatim
  180: *>
  181: *> \param[in,out] IPIV
  182: *> \verbatim
  183: *>          IPIV is INTEGER array, dimension (N)
  184: *>          If FACT = 'F', then IPIV is an input argument and on entry
  185: *>          contains the pivot indices from the LU factorization of A as
  186: *>          computed by ZGTTRF.
  187: *>
  188: *>          If FACT = 'N', then IPIV is an output argument and on exit
  189: *>          contains the pivot indices from the LU factorization of A;
  190: *>          row i of the matrix was interchanged with row IPIV(i).
  191: *>          IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
  192: *>          a row interchange was not required.
  193: *> \endverbatim
  194: *>
  195: *> \param[in] B
  196: *> \verbatim
  197: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  198: *>          The N-by-NRHS right hand side matrix B.
  199: *> \endverbatim
  200: *>
  201: *> \param[in] LDB
  202: *> \verbatim
  203: *>          LDB is INTEGER
  204: *>          The leading dimension of the array B.  LDB >= max(1,N).
  205: *> \endverbatim
  206: *>
  207: *> \param[out] X
  208: *> \verbatim
  209: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  210: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
  211: *> \endverbatim
  212: *>
  213: *> \param[in] LDX
  214: *> \verbatim
  215: *>          LDX is INTEGER
  216: *>          The leading dimension of the array X.  LDX >= max(1,N).
  217: *> \endverbatim
  218: *>
  219: *> \param[out] RCOND
  220: *> \verbatim
  221: *>          RCOND is DOUBLE PRECISION
  222: *>          The estimate of the reciprocal condition number of the matrix
  223: *>          A.  If RCOND is less than the machine precision (in
  224: *>          particular, if RCOND = 0), the matrix is singular to working
  225: *>          precision.  This condition is indicated by a return code of
  226: *>          INFO > 0.
  227: *> \endverbatim
  228: *>
  229: *> \param[out] FERR
  230: *> \verbatim
  231: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  232: *>          The estimated forward error bound for each solution vector
  233: *>          X(j) (the j-th column of the solution matrix X).
  234: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  235: *>          is an estimated upper bound for the magnitude of the largest
  236: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  237: *>          largest element in X(j).  The estimate is as reliable as
  238: *>          the estimate for RCOND, and is almost always a slight
  239: *>          overestimate of the true error.
  240: *> \endverbatim
  241: *>
  242: *> \param[out] BERR
  243: *> \verbatim
  244: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  245: *>          The componentwise relative backward error of each solution
  246: *>          vector X(j) (i.e., the smallest relative change in
  247: *>          any element of A or B that makes X(j) an exact solution).
  248: *> \endverbatim
  249: *>
  250: *> \param[out] WORK
  251: *> \verbatim
  252: *>          WORK is COMPLEX*16 array, dimension (2*N)
  253: *> \endverbatim
  254: *>
  255: *> \param[out] RWORK
  256: *> \verbatim
  257: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  258: *> \endverbatim
  259: *>
  260: *> \param[out] INFO
  261: *> \verbatim
  262: *>          INFO is INTEGER
  263: *>          = 0:  successful exit
  264: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  265: *>          > 0:  if INFO = i, and i is
  266: *>                <= N:  U(i,i) is exactly zero.  The factorization
  267: *>                       has not been completed unless i = N, but the
  268: *>                       factor U is exactly singular, so the solution
  269: *>                       and error bounds could not be computed.
  270: *>                       RCOND = 0 is returned.
  271: *>                = N+1: U is nonsingular, but RCOND is less than machine
  272: *>                       precision, meaning that the matrix is singular
  273: *>                       to working precision.  Nevertheless, the
  274: *>                       solution and error bounds are computed because
  275: *>                       there are a number of situations where the
  276: *>                       computed solution can be more accurate than the
  277: *>                       value of RCOND would suggest.
  278: *> \endverbatim
  279: *
  280: *  Authors:
  281: *  ========
  282: *
  283: *> \author Univ. of Tennessee 
  284: *> \author Univ. of California Berkeley 
  285: *> \author Univ. of Colorado Denver 
  286: *> \author NAG Ltd. 
  287: *
  288: *> \date April 2012
  289: *
  290: *> \ingroup complex16OTHERcomputational
  291: *
  292: *  =====================================================================
  293:       SUBROUTINE ZGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
  294:      $                   DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
  295:      $                   WORK, RWORK, INFO )
  296: *
  297: *  -- LAPACK computational routine (version 3.4.1) --
  298: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  299: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  300: *     April 2012
  301: *
  302: *     .. Scalar Arguments ..
  303:       CHARACTER          FACT, TRANS
  304:       INTEGER            INFO, LDB, LDX, N, NRHS
  305:       DOUBLE PRECISION   RCOND
  306: *     ..
  307: *     .. Array Arguments ..
  308:       INTEGER            IPIV( * )
  309:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
  310:       COMPLEX*16         B( LDB, * ), D( * ), DF( * ), DL( * ),
  311:      $                   DLF( * ), DU( * ), DU2( * ), DUF( * ),
  312:      $                   WORK( * ), X( LDX, * )
  313: *     ..
  314: *
  315: *  =====================================================================
  316: *
  317: *     .. Parameters ..
  318:       DOUBLE PRECISION   ZERO
  319:       PARAMETER          ( ZERO = 0.0D+0 )
  320: *     ..
  321: *     .. Local Scalars ..
  322:       LOGICAL            NOFACT, NOTRAN
  323:       CHARACTER          NORM
  324:       DOUBLE PRECISION   ANORM
  325: *     ..
  326: *     .. External Functions ..
  327:       LOGICAL            LSAME
  328:       DOUBLE PRECISION   DLAMCH, ZLANGT
  329:       EXTERNAL           LSAME, DLAMCH, ZLANGT
  330: *     ..
  331: *     .. External Subroutines ..
  332:       EXTERNAL           XERBLA, ZCOPY, ZGTCON, ZGTRFS, ZGTTRF, ZGTTRS,
  333:      $                   ZLACPY
  334: *     ..
  335: *     .. Intrinsic Functions ..
  336:       INTRINSIC          MAX
  337: *     ..
  338: *     .. Executable Statements ..
  339: *
  340:       INFO = 0
  341:       NOFACT = LSAME( FACT, 'N' )
  342:       NOTRAN = LSAME( TRANS, 'N' )
  343:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
  344:          INFO = -1
  345:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  346:      $         LSAME( TRANS, 'C' ) ) THEN
  347:          INFO = -2
  348:       ELSE IF( N.LT.0 ) THEN
  349:          INFO = -3
  350:       ELSE IF( NRHS.LT.0 ) THEN
  351:          INFO = -4
  352:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  353:          INFO = -14
  354:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  355:          INFO = -16
  356:       END IF
  357:       IF( INFO.NE.0 ) THEN
  358:          CALL XERBLA( 'ZGTSVX', -INFO )
  359:          RETURN
  360:       END IF
  361: *
  362:       IF( NOFACT ) THEN
  363: *
  364: *        Compute the LU factorization of A.
  365: *
  366:          CALL ZCOPY( N, D, 1, DF, 1 )
  367:          IF( N.GT.1 ) THEN
  368:             CALL ZCOPY( N-1, DL, 1, DLF, 1 )
  369:             CALL ZCOPY( N-1, DU, 1, DUF, 1 )
  370:          END IF
  371:          CALL ZGTTRF( N, DLF, DF, DUF, DU2, IPIV, INFO )
  372: *
  373: *        Return if INFO is non-zero.
  374: *
  375:          IF( INFO.GT.0 )THEN
  376:             RCOND = ZERO
  377:             RETURN
  378:          END IF
  379:       END IF
  380: *
  381: *     Compute the norm of the matrix A.
  382: *
  383:       IF( NOTRAN ) THEN
  384:          NORM = '1'
  385:       ELSE
  386:          NORM = 'I'
  387:       END IF
  388:       ANORM = ZLANGT( NORM, N, DL, D, DU )
  389: *
  390: *     Compute the reciprocal of the condition number of A.
  391: *
  392:       CALL ZGTCON( NORM, N, DLF, DF, DUF, DU2, IPIV, ANORM, RCOND, WORK,
  393:      $             INFO )
  394: *
  395: *     Compute the solution vectors X.
  396: *
  397:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  398:       CALL ZGTTRS( TRANS, N, NRHS, DLF, DF, DUF, DU2, IPIV, X, LDX,
  399:      $             INFO )
  400: *
  401: *     Use iterative refinement to improve the computed solutions and
  402: *     compute error bounds and backward error estimates for them.
  403: *
  404:       CALL ZGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
  405:      $             B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
  406: *
  407: *     Set INFO = N+1 if the matrix is singular to working precision.
  408: *
  409:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  410:      $   INFO = N + 1
  411: *
  412:       RETURN
  413: *
  414: *     End of ZGTSVX
  415: *
  416:       END

CVSweb interface <joel.bertrand@systella.fr>