Annotation of rpl/lapack/lapack/zgtsv.f, revision 1.19

1.16      bertrand    1: *> \brief <b> ZGTSV computes the solution to system of linear equations A * X = B for GT matrices </b>
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZGTSV + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgtsv.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgtsv.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgtsv.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
1.16      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, LDB, N, NRHS
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       COMPLEX*16         B( LDB, * ), D( * ), DL( * ), DU( * )
                     28: *       ..
1.16      bertrand   29: *
1.9       bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> ZGTSV  solves the equation
                     37: *>
                     38: *>    A*X = B,
                     39: *>
                     40: *> where A is an N-by-N tridiagonal matrix, by Gaussian elimination with
                     41: *> partial pivoting.
                     42: *>
                     43: *> Note that the equation  A**T *X = B  may be solved by interchanging the
                     44: *> order of the arguments DU and DL.
                     45: *> \endverbatim
                     46: *
                     47: *  Arguments:
                     48: *  ==========
                     49: *
                     50: *> \param[in] N
                     51: *> \verbatim
                     52: *>          N is INTEGER
                     53: *>          The order of the matrix A.  N >= 0.
                     54: *> \endverbatim
                     55: *>
                     56: *> \param[in] NRHS
                     57: *> \verbatim
                     58: *>          NRHS is INTEGER
                     59: *>          The number of right hand sides, i.e., the number of columns
                     60: *>          of the matrix B.  NRHS >= 0.
                     61: *> \endverbatim
                     62: *>
                     63: *> \param[in,out] DL
                     64: *> \verbatim
                     65: *>          DL is COMPLEX*16 array, dimension (N-1)
                     66: *>          On entry, DL must contain the (n-1) subdiagonal elements of
                     67: *>          A.
                     68: *>          On exit, DL is overwritten by the (n-2) elements of the
                     69: *>          second superdiagonal of the upper triangular matrix U from
                     70: *>          the LU factorization of A, in DL(1), ..., DL(n-2).
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[in,out] D
                     74: *> \verbatim
                     75: *>          D is COMPLEX*16 array, dimension (N)
                     76: *>          On entry, D must contain the diagonal elements of A.
                     77: *>          On exit, D is overwritten by the n diagonal elements of U.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in,out] DU
                     81: *> \verbatim
                     82: *>          DU is COMPLEX*16 array, dimension (N-1)
                     83: *>          On entry, DU must contain the (n-1) superdiagonal elements
                     84: *>          of A.
                     85: *>          On exit, DU is overwritten by the (n-1) elements of the first
                     86: *>          superdiagonal of U.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in,out] B
                     90: *> \verbatim
                     91: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                     92: *>          On entry, the N-by-NRHS right hand side matrix B.
                     93: *>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] LDB
                     97: *> \verbatim
                     98: *>          LDB is INTEGER
                     99: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[out] INFO
                    103: *> \verbatim
                    104: *>          INFO is INTEGER
                    105: *>          = 0:  successful exit
                    106: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    107: *>          > 0:  if INFO = i, U(i,i) is exactly zero, and the solution
                    108: *>                has not been computed.  The factorization has not been
                    109: *>                completed unless i = N.
                    110: *> \endverbatim
                    111: *
                    112: *  Authors:
                    113: *  ========
                    114: *
1.16      bertrand  115: *> \author Univ. of Tennessee
                    116: *> \author Univ. of California Berkeley
                    117: *> \author Univ. of Colorado Denver
                    118: *> \author NAG Ltd.
1.9       bertrand  119: *
1.12      bertrand  120: *> \ingroup complex16GTsolve
1.9       bertrand  121: *
                    122: *  =====================================================================
1.1       bertrand  123:       SUBROUTINE ZGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
                    124: *
1.19    ! bertrand  125: *  -- LAPACK driver routine --
1.1       bertrand  126: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    127: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    128: *
                    129: *     .. Scalar Arguments ..
                    130:       INTEGER            INFO, LDB, N, NRHS
                    131: *     ..
                    132: *     .. Array Arguments ..
                    133:       COMPLEX*16         B( LDB, * ), D( * ), DL( * ), DU( * )
                    134: *     ..
                    135: *
                    136: *  =====================================================================
                    137: *
                    138: *     .. Parameters ..
                    139:       COMPLEX*16         ZERO
                    140:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
                    141: *     ..
                    142: *     .. Local Scalars ..
                    143:       INTEGER            J, K
                    144:       COMPLEX*16         MULT, TEMP, ZDUM
                    145: *     ..
                    146: *     .. Intrinsic Functions ..
                    147:       INTRINSIC          ABS, DBLE, DIMAG, MAX
                    148: *     ..
                    149: *     .. External Subroutines ..
                    150:       EXTERNAL           XERBLA
                    151: *     ..
                    152: *     .. Statement Functions ..
                    153:       DOUBLE PRECISION   CABS1
                    154: *     ..
                    155: *     .. Statement Function definitions ..
                    156:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    157: *     ..
                    158: *     .. Executable Statements ..
                    159: *
                    160:       INFO = 0
                    161:       IF( N.LT.0 ) THEN
                    162:          INFO = -1
                    163:       ELSE IF( NRHS.LT.0 ) THEN
                    164:          INFO = -2
                    165:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    166:          INFO = -7
                    167:       END IF
                    168:       IF( INFO.NE.0 ) THEN
                    169:          CALL XERBLA( 'ZGTSV ', -INFO )
                    170:          RETURN
                    171:       END IF
                    172: *
                    173:       IF( N.EQ.0 )
                    174:      $   RETURN
                    175: *
                    176:       DO 30 K = 1, N - 1
                    177:          IF( DL( K ).EQ.ZERO ) THEN
                    178: *
                    179: *           Subdiagonal is zero, no elimination is required.
                    180: *
                    181:             IF( D( K ).EQ.ZERO ) THEN
                    182: *
                    183: *              Diagonal is zero: set INFO = K and return; a unique
                    184: *              solution can not be found.
                    185: *
                    186:                INFO = K
                    187:                RETURN
                    188:             END IF
                    189:          ELSE IF( CABS1( D( K ) ).GE.CABS1( DL( K ) ) ) THEN
                    190: *
                    191: *           No row interchange required
                    192: *
                    193:             MULT = DL( K ) / D( K )
                    194:             D( K+1 ) = D( K+1 ) - MULT*DU( K )
                    195:             DO 10 J = 1, NRHS
                    196:                B( K+1, J ) = B( K+1, J ) - MULT*B( K, J )
                    197:    10       CONTINUE
                    198:             IF( K.LT.( N-1 ) )
                    199:      $         DL( K ) = ZERO
                    200:          ELSE
                    201: *
                    202: *           Interchange rows K and K+1
                    203: *
                    204:             MULT = D( K ) / DL( K )
                    205:             D( K ) = DL( K )
                    206:             TEMP = D( K+1 )
                    207:             D( K+1 ) = DU( K ) - MULT*TEMP
                    208:             IF( K.LT.( N-1 ) ) THEN
                    209:                DL( K ) = DU( K+1 )
                    210:                DU( K+1 ) = -MULT*DL( K )
                    211:             END IF
                    212:             DU( K ) = TEMP
                    213:             DO 20 J = 1, NRHS
                    214:                TEMP = B( K, J )
                    215:                B( K, J ) = B( K+1, J )
                    216:                B( K+1, J ) = TEMP - MULT*B( K+1, J )
                    217:    20       CONTINUE
                    218:          END IF
                    219:    30 CONTINUE
                    220:       IF( D( N ).EQ.ZERO ) THEN
                    221:          INFO = N
                    222:          RETURN
                    223:       END IF
                    224: *
                    225: *     Back solve with the matrix U from the factorization.
                    226: *
                    227:       DO 50 J = 1, NRHS
                    228:          B( N, J ) = B( N, J ) / D( N )
                    229:          IF( N.GT.1 )
                    230:      $      B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / D( N-1 )
                    231:          DO 40 K = N - 2, 1, -1
                    232:             B( K, J ) = ( B( K, J )-DU( K )*B( K+1, J )-DL( K )*
                    233:      $                  B( K+2, J ) ) / D( K )
                    234:    40    CONTINUE
                    235:    50 CONTINUE
                    236: *
                    237:       RETURN
                    238: *
                    239: *     End of ZGTSV
                    240: *
                    241:       END

CVSweb interface <joel.bertrand@systella.fr>