File:  [local] / rpl / lapack / lapack / zgtrfs.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:31 2012 UTC (11 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b ZGTRFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZGTRFS + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgtrfs.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgtrfs.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgtrfs.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
   22: *                          IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
   23: *                          INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          TRANS
   27: *       INTEGER            INFO, LDB, LDX, N, NRHS
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       INTEGER            IPIV( * )
   31: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   32: *       COMPLEX*16         B( LDB, * ), D( * ), DF( * ), DL( * ),
   33: *      $                   DLF( * ), DU( * ), DU2( * ), DUF( * ),
   34: *      $                   WORK( * ), X( LDX, * )
   35: *       ..
   36: *  
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> ZGTRFS improves the computed solution to a system of linear
   44: *> equations when the coefficient matrix is tridiagonal, and provides
   45: *> error bounds and backward error estimates for the solution.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] TRANS
   52: *> \verbatim
   53: *>          TRANS is CHARACTER*1
   54: *>          Specifies the form of the system of equations:
   55: *>          = 'N':  A * X = B     (No transpose)
   56: *>          = 'T':  A**T * X = B  (Transpose)
   57: *>          = 'C':  A**H * X = B  (Conjugate transpose)
   58: *> \endverbatim
   59: *>
   60: *> \param[in] N
   61: *> \verbatim
   62: *>          N is INTEGER
   63: *>          The order of the matrix A.  N >= 0.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] NRHS
   67: *> \verbatim
   68: *>          NRHS is INTEGER
   69: *>          The number of right hand sides, i.e., the number of columns
   70: *>          of the matrix B.  NRHS >= 0.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] DL
   74: *> \verbatim
   75: *>          DL is COMPLEX*16 array, dimension (N-1)
   76: *>          The (n-1) subdiagonal elements of A.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] D
   80: *> \verbatim
   81: *>          D is COMPLEX*16 array, dimension (N)
   82: *>          The diagonal elements of A.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] DU
   86: *> \verbatim
   87: *>          DU is COMPLEX*16 array, dimension (N-1)
   88: *>          The (n-1) superdiagonal elements of A.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] DLF
   92: *> \verbatim
   93: *>          DLF is COMPLEX*16 array, dimension (N-1)
   94: *>          The (n-1) multipliers that define the matrix L from the
   95: *>          LU factorization of A as computed by ZGTTRF.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] DF
   99: *> \verbatim
  100: *>          DF is COMPLEX*16 array, dimension (N)
  101: *>          The n diagonal elements of the upper triangular matrix U from
  102: *>          the LU factorization of A.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] DUF
  106: *> \verbatim
  107: *>          DUF is COMPLEX*16 array, dimension (N-1)
  108: *>          The (n-1) elements of the first superdiagonal of U.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] DU2
  112: *> \verbatim
  113: *>          DU2 is COMPLEX*16 array, dimension (N-2)
  114: *>          The (n-2) elements of the second superdiagonal of U.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] IPIV
  118: *> \verbatim
  119: *>          IPIV is INTEGER array, dimension (N)
  120: *>          The pivot indices; for 1 <= i <= n, row i of the matrix was
  121: *>          interchanged with row IPIV(i).  IPIV(i) will always be either
  122: *>          i or i+1; IPIV(i) = i indicates a row interchange was not
  123: *>          required.
  124: *> \endverbatim
  125: *>
  126: *> \param[in] B
  127: *> \verbatim
  128: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  129: *>          The right hand side matrix B.
  130: *> \endverbatim
  131: *>
  132: *> \param[in] LDB
  133: *> \verbatim
  134: *>          LDB is INTEGER
  135: *>          The leading dimension of the array B.  LDB >= max(1,N).
  136: *> \endverbatim
  137: *>
  138: *> \param[in,out] X
  139: *> \verbatim
  140: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  141: *>          On entry, the solution matrix X, as computed by ZGTTRS.
  142: *>          On exit, the improved solution matrix X.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] LDX
  146: *> \verbatim
  147: *>          LDX is INTEGER
  148: *>          The leading dimension of the array X.  LDX >= max(1,N).
  149: *> \endverbatim
  150: *>
  151: *> \param[out] FERR
  152: *> \verbatim
  153: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  154: *>          The estimated forward error bound for each solution vector
  155: *>          X(j) (the j-th column of the solution matrix X).
  156: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  157: *>          is an estimated upper bound for the magnitude of the largest
  158: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  159: *>          largest element in X(j).  The estimate is as reliable as
  160: *>          the estimate for RCOND, and is almost always a slight
  161: *>          overestimate of the true error.
  162: *> \endverbatim
  163: *>
  164: *> \param[out] BERR
  165: *> \verbatim
  166: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  167: *>          The componentwise relative backward error of each solution
  168: *>          vector X(j) (i.e., the smallest relative change in
  169: *>          any element of A or B that makes X(j) an exact solution).
  170: *> \endverbatim
  171: *>
  172: *> \param[out] WORK
  173: *> \verbatim
  174: *>          WORK is COMPLEX*16 array, dimension (2*N)
  175: *> \endverbatim
  176: *>
  177: *> \param[out] RWORK
  178: *> \verbatim
  179: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  180: *> \endverbatim
  181: *>
  182: *> \param[out] INFO
  183: *> \verbatim
  184: *>          INFO is INTEGER
  185: *>          = 0:  successful exit
  186: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  187: *> \endverbatim
  188: *
  189: *> \par Internal Parameters:
  190: *  =========================
  191: *>
  192: *> \verbatim
  193: *>  ITMAX is the maximum number of steps of iterative refinement.
  194: *> \endverbatim
  195: *
  196: *  Authors:
  197: *  ========
  198: *
  199: *> \author Univ. of Tennessee 
  200: *> \author Univ. of California Berkeley 
  201: *> \author Univ. of Colorado Denver 
  202: *> \author NAG Ltd. 
  203: *
  204: *> \date November 2011
  205: *
  206: *> \ingroup complex16OTHERcomputational
  207: *
  208: *  =====================================================================
  209:       SUBROUTINE ZGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
  210:      $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
  211:      $                   INFO )
  212: *
  213: *  -- LAPACK computational routine (version 3.4.0) --
  214: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  215: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  216: *     November 2011
  217: *
  218: *     .. Scalar Arguments ..
  219:       CHARACTER          TRANS
  220:       INTEGER            INFO, LDB, LDX, N, NRHS
  221: *     ..
  222: *     .. Array Arguments ..
  223:       INTEGER            IPIV( * )
  224:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
  225:       COMPLEX*16         B( LDB, * ), D( * ), DF( * ), DL( * ),
  226:      $                   DLF( * ), DU( * ), DU2( * ), DUF( * ),
  227:      $                   WORK( * ), X( LDX, * )
  228: *     ..
  229: *
  230: *  =====================================================================
  231: *
  232: *     .. Parameters ..
  233:       INTEGER            ITMAX
  234:       PARAMETER          ( ITMAX = 5 )
  235:       DOUBLE PRECISION   ZERO, ONE
  236:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  237:       DOUBLE PRECISION   TWO
  238:       PARAMETER          ( TWO = 2.0D+0 )
  239:       DOUBLE PRECISION   THREE
  240:       PARAMETER          ( THREE = 3.0D+0 )
  241: *     ..
  242: *     .. Local Scalars ..
  243:       LOGICAL            NOTRAN
  244:       CHARACTER          TRANSN, TRANST
  245:       INTEGER            COUNT, I, J, KASE, NZ
  246:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
  247:       COMPLEX*16         ZDUM
  248: *     ..
  249: *     .. Local Arrays ..
  250:       INTEGER            ISAVE( 3 )
  251: *     ..
  252: *     .. External Subroutines ..
  253:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGTTRS, ZLACN2, ZLAGTM
  254: *     ..
  255: *     .. Intrinsic Functions ..
  256:       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, MAX
  257: *     ..
  258: *     .. External Functions ..
  259:       LOGICAL            LSAME
  260:       DOUBLE PRECISION   DLAMCH
  261:       EXTERNAL           LSAME, DLAMCH
  262: *     ..
  263: *     .. Statement Functions ..
  264:       DOUBLE PRECISION   CABS1
  265: *     ..
  266: *     .. Statement Function definitions ..
  267:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  268: *     ..
  269: *     .. Executable Statements ..
  270: *
  271: *     Test the input parameters.
  272: *
  273:       INFO = 0
  274:       NOTRAN = LSAME( TRANS, 'N' )
  275:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  276:      $    LSAME( TRANS, 'C' ) ) THEN
  277:          INFO = -1
  278:       ELSE IF( N.LT.0 ) THEN
  279:          INFO = -2
  280:       ELSE IF( NRHS.LT.0 ) THEN
  281:          INFO = -3
  282:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  283:          INFO = -13
  284:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  285:          INFO = -15
  286:       END IF
  287:       IF( INFO.NE.0 ) THEN
  288:          CALL XERBLA( 'ZGTRFS', -INFO )
  289:          RETURN
  290:       END IF
  291: *
  292: *     Quick return if possible
  293: *
  294:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  295:          DO 10 J = 1, NRHS
  296:             FERR( J ) = ZERO
  297:             BERR( J ) = ZERO
  298:    10    CONTINUE
  299:          RETURN
  300:       END IF
  301: *
  302:       IF( NOTRAN ) THEN
  303:          TRANSN = 'N'
  304:          TRANST = 'C'
  305:       ELSE
  306:          TRANSN = 'C'
  307:          TRANST = 'N'
  308:       END IF
  309: *
  310: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  311: *
  312:       NZ = 4
  313:       EPS = DLAMCH( 'Epsilon' )
  314:       SAFMIN = DLAMCH( 'Safe minimum' )
  315:       SAFE1 = NZ*SAFMIN
  316:       SAFE2 = SAFE1 / EPS
  317: *
  318: *     Do for each right hand side
  319: *
  320:       DO 110 J = 1, NRHS
  321: *
  322:          COUNT = 1
  323:          LSTRES = THREE
  324:    20    CONTINUE
  325: *
  326: *        Loop until stopping criterion is satisfied.
  327: *
  328: *        Compute residual R = B - op(A) * X,
  329: *        where op(A) = A, A**T, or A**H, depending on TRANS.
  330: *
  331:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
  332:          CALL ZLAGTM( TRANS, N, 1, -ONE, DL, D, DU, X( 1, J ), LDX, ONE,
  333:      $                WORK, N )
  334: *
  335: *        Compute abs(op(A))*abs(x) + abs(b) for use in the backward
  336: *        error bound.
  337: *
  338:          IF( NOTRAN ) THEN
  339:             IF( N.EQ.1 ) THEN
  340:                RWORK( 1 ) = CABS1( B( 1, J ) ) +
  341:      $                      CABS1( D( 1 ) )*CABS1( X( 1, J ) )
  342:             ELSE
  343:                RWORK( 1 ) = CABS1( B( 1, J ) ) +
  344:      $                      CABS1( D( 1 ) )*CABS1( X( 1, J ) ) +
  345:      $                      CABS1( DU( 1 ) )*CABS1( X( 2, J ) )
  346:                DO 30 I = 2, N - 1
  347:                   RWORK( I ) = CABS1( B( I, J ) ) +
  348:      $                         CABS1( DL( I-1 ) )*CABS1( X( I-1, J ) ) +
  349:      $                         CABS1( D( I ) )*CABS1( X( I, J ) ) +
  350:      $                         CABS1( DU( I ) )*CABS1( X( I+1, J ) )
  351:    30          CONTINUE
  352:                RWORK( N ) = CABS1( B( N, J ) ) +
  353:      $                      CABS1( DL( N-1 ) )*CABS1( X( N-1, J ) ) +
  354:      $                      CABS1( D( N ) )*CABS1( X( N, J ) )
  355:             END IF
  356:          ELSE
  357:             IF( N.EQ.1 ) THEN
  358:                RWORK( 1 ) = CABS1( B( 1, J ) ) +
  359:      $                      CABS1( D( 1 ) )*CABS1( X( 1, J ) )
  360:             ELSE
  361:                RWORK( 1 ) = CABS1( B( 1, J ) ) +
  362:      $                      CABS1( D( 1 ) )*CABS1( X( 1, J ) ) +
  363:      $                      CABS1( DL( 1 ) )*CABS1( X( 2, J ) )
  364:                DO 40 I = 2, N - 1
  365:                   RWORK( I ) = CABS1( B( I, J ) ) +
  366:      $                         CABS1( DU( I-1 ) )*CABS1( X( I-1, J ) ) +
  367:      $                         CABS1( D( I ) )*CABS1( X( I, J ) ) +
  368:      $                         CABS1( DL( I ) )*CABS1( X( I+1, J ) )
  369:    40          CONTINUE
  370:                RWORK( N ) = CABS1( B( N, J ) ) +
  371:      $                      CABS1( DU( N-1 ) )*CABS1( X( N-1, J ) ) +
  372:      $                      CABS1( D( N ) )*CABS1( X( N, J ) )
  373:             END IF
  374:          END IF
  375: *
  376: *        Compute componentwise relative backward error from formula
  377: *
  378: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  379: *
  380: *        where abs(Z) is the componentwise absolute value of the matrix
  381: *        or vector Z.  If the i-th component of the denominator is less
  382: *        than SAFE2, then SAFE1 is added to the i-th components of the
  383: *        numerator and denominator before dividing.
  384: *
  385:          S = ZERO
  386:          DO 50 I = 1, N
  387:             IF( RWORK( I ).GT.SAFE2 ) THEN
  388:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  389:             ELSE
  390:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  391:      $             ( RWORK( I )+SAFE1 ) )
  392:             END IF
  393:    50    CONTINUE
  394:          BERR( J ) = S
  395: *
  396: *        Test stopping criterion. Continue iterating if
  397: *           1) The residual BERR(J) is larger than machine epsilon, and
  398: *           2) BERR(J) decreased by at least a factor of 2 during the
  399: *              last iteration, and
  400: *           3) At most ITMAX iterations tried.
  401: *
  402:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  403:      $       COUNT.LE.ITMAX ) THEN
  404: *
  405: *           Update solution and try again.
  406: *
  407:             CALL ZGTTRS( TRANS, N, 1, DLF, DF, DUF, DU2, IPIV, WORK, N,
  408:      $                   INFO )
  409:             CALL ZAXPY( N, DCMPLX( ONE ), WORK, 1, X( 1, J ), 1 )
  410:             LSTRES = BERR( J )
  411:             COUNT = COUNT + 1
  412:             GO TO 20
  413:          END IF
  414: *
  415: *        Bound error from formula
  416: *
  417: *        norm(X - XTRUE) / norm(X) .le. FERR =
  418: *        norm( abs(inv(op(A)))*
  419: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  420: *
  421: *        where
  422: *          norm(Z) is the magnitude of the largest component of Z
  423: *          inv(op(A)) is the inverse of op(A)
  424: *          abs(Z) is the componentwise absolute value of the matrix or
  425: *             vector Z
  426: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  427: *          EPS is machine epsilon
  428: *
  429: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  430: *        is incremented by SAFE1 if the i-th component of
  431: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  432: *
  433: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  434: *           inv(op(A)) * diag(W),
  435: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  436: *
  437:          DO 60 I = 1, N
  438:             IF( RWORK( I ).GT.SAFE2 ) THEN
  439:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  440:             ELSE
  441:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  442:      $                      SAFE1
  443:             END IF
  444:    60    CONTINUE
  445: *
  446:          KASE = 0
  447:    70    CONTINUE
  448:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  449:          IF( KASE.NE.0 ) THEN
  450:             IF( KASE.EQ.1 ) THEN
  451: *
  452: *              Multiply by diag(W)*inv(op(A)**H).
  453: *
  454:                CALL ZGTTRS( TRANST, N, 1, DLF, DF, DUF, DU2, IPIV, WORK,
  455:      $                      N, INFO )
  456:                DO 80 I = 1, N
  457:                   WORK( I ) = RWORK( I )*WORK( I )
  458:    80          CONTINUE
  459:             ELSE
  460: *
  461: *              Multiply by inv(op(A))*diag(W).
  462: *
  463:                DO 90 I = 1, N
  464:                   WORK( I ) = RWORK( I )*WORK( I )
  465:    90          CONTINUE
  466:                CALL ZGTTRS( TRANSN, N, 1, DLF, DF, DUF, DU2, IPIV, WORK,
  467:      $                      N, INFO )
  468:             END IF
  469:             GO TO 70
  470:          END IF
  471: *
  472: *        Normalize error.
  473: *
  474:          LSTRES = ZERO
  475:          DO 100 I = 1, N
  476:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  477:   100    CONTINUE
  478:          IF( LSTRES.NE.ZERO )
  479:      $      FERR( J ) = FERR( J ) / LSTRES
  480: *
  481:   110 CONTINUE
  482: *
  483:       RETURN
  484: *
  485: *     End of ZGTRFS
  486: *
  487:       END

CVSweb interface <joel.bertrand@systella.fr>