Annotation of rpl/lapack/lapack/zgtrfs.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b ZGTRFS
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZGTRFS + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgtrfs.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgtrfs.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgtrfs.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
        !            22: *                          IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
        !            23: *                          INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          TRANS
        !            27: *       INTEGER            INFO, LDB, LDX, N, NRHS
        !            28: *       ..
        !            29: *       .. Array Arguments ..
        !            30: *       INTEGER            IPIV( * )
        !            31: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
        !            32: *       COMPLEX*16         B( LDB, * ), D( * ), DF( * ), DL( * ),
        !            33: *      $                   DLF( * ), DU( * ), DU2( * ), DUF( * ),
        !            34: *      $                   WORK( * ), X( LDX, * )
        !            35: *       ..
        !            36: *  
        !            37: *
        !            38: *> \par Purpose:
        !            39: *  =============
        !            40: *>
        !            41: *> \verbatim
        !            42: *>
        !            43: *> ZGTRFS improves the computed solution to a system of linear
        !            44: *> equations when the coefficient matrix is tridiagonal, and provides
        !            45: *> error bounds and backward error estimates for the solution.
        !            46: *> \endverbatim
        !            47: *
        !            48: *  Arguments:
        !            49: *  ==========
        !            50: *
        !            51: *> \param[in] TRANS
        !            52: *> \verbatim
        !            53: *>          TRANS is CHARACTER*1
        !            54: *>          Specifies the form of the system of equations:
        !            55: *>          = 'N':  A * X = B     (No transpose)
        !            56: *>          = 'T':  A**T * X = B  (Transpose)
        !            57: *>          = 'C':  A**H * X = B  (Conjugate transpose)
        !            58: *> \endverbatim
        !            59: *>
        !            60: *> \param[in] N
        !            61: *> \verbatim
        !            62: *>          N is INTEGER
        !            63: *>          The order of the matrix A.  N >= 0.
        !            64: *> \endverbatim
        !            65: *>
        !            66: *> \param[in] NRHS
        !            67: *> \verbatim
        !            68: *>          NRHS is INTEGER
        !            69: *>          The number of right hand sides, i.e., the number of columns
        !            70: *>          of the matrix B.  NRHS >= 0.
        !            71: *> \endverbatim
        !            72: *>
        !            73: *> \param[in] DL
        !            74: *> \verbatim
        !            75: *>          DL is COMPLEX*16 array, dimension (N-1)
        !            76: *>          The (n-1) subdiagonal elements of A.
        !            77: *> \endverbatim
        !            78: *>
        !            79: *> \param[in] D
        !            80: *> \verbatim
        !            81: *>          D is COMPLEX*16 array, dimension (N)
        !            82: *>          The diagonal elements of A.
        !            83: *> \endverbatim
        !            84: *>
        !            85: *> \param[in] DU
        !            86: *> \verbatim
        !            87: *>          DU is COMPLEX*16 array, dimension (N-1)
        !            88: *>          The (n-1) superdiagonal elements of A.
        !            89: *> \endverbatim
        !            90: *>
        !            91: *> \param[in] DLF
        !            92: *> \verbatim
        !            93: *>          DLF is COMPLEX*16 array, dimension (N-1)
        !            94: *>          The (n-1) multipliers that define the matrix L from the
        !            95: *>          LU factorization of A as computed by ZGTTRF.
        !            96: *> \endverbatim
        !            97: *>
        !            98: *> \param[in] DF
        !            99: *> \verbatim
        !           100: *>          DF is COMPLEX*16 array, dimension (N)
        !           101: *>          The n diagonal elements of the upper triangular matrix U from
        !           102: *>          the LU factorization of A.
        !           103: *> \endverbatim
        !           104: *>
        !           105: *> \param[in] DUF
        !           106: *> \verbatim
        !           107: *>          DUF is COMPLEX*16 array, dimension (N-1)
        !           108: *>          The (n-1) elements of the first superdiagonal of U.
        !           109: *> \endverbatim
        !           110: *>
        !           111: *> \param[in] DU2
        !           112: *> \verbatim
        !           113: *>          DU2 is COMPLEX*16 array, dimension (N-2)
        !           114: *>          The (n-2) elements of the second superdiagonal of U.
        !           115: *> \endverbatim
        !           116: *>
        !           117: *> \param[in] IPIV
        !           118: *> \verbatim
        !           119: *>          IPIV is INTEGER array, dimension (N)
        !           120: *>          The pivot indices; for 1 <= i <= n, row i of the matrix was
        !           121: *>          interchanged with row IPIV(i).  IPIV(i) will always be either
        !           122: *>          i or i+1; IPIV(i) = i indicates a row interchange was not
        !           123: *>          required.
        !           124: *> \endverbatim
        !           125: *>
        !           126: *> \param[in] B
        !           127: *> \verbatim
        !           128: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
        !           129: *>          The right hand side matrix B.
        !           130: *> \endverbatim
        !           131: *>
        !           132: *> \param[in] LDB
        !           133: *> \verbatim
        !           134: *>          LDB is INTEGER
        !           135: *>          The leading dimension of the array B.  LDB >= max(1,N).
        !           136: *> \endverbatim
        !           137: *>
        !           138: *> \param[in,out] X
        !           139: *> \verbatim
        !           140: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
        !           141: *>          On entry, the solution matrix X, as computed by ZGTTRS.
        !           142: *>          On exit, the improved solution matrix X.
        !           143: *> \endverbatim
        !           144: *>
        !           145: *> \param[in] LDX
        !           146: *> \verbatim
        !           147: *>          LDX is INTEGER
        !           148: *>          The leading dimension of the array X.  LDX >= max(1,N).
        !           149: *> \endverbatim
        !           150: *>
        !           151: *> \param[out] FERR
        !           152: *> \verbatim
        !           153: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
        !           154: *>          The estimated forward error bound for each solution vector
        !           155: *>          X(j) (the j-th column of the solution matrix X).
        !           156: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           157: *>          is an estimated upper bound for the magnitude of the largest
        !           158: *>          element in (X(j) - XTRUE) divided by the magnitude of the
        !           159: *>          largest element in X(j).  The estimate is as reliable as
        !           160: *>          the estimate for RCOND, and is almost always a slight
        !           161: *>          overestimate of the true error.
        !           162: *> \endverbatim
        !           163: *>
        !           164: *> \param[out] BERR
        !           165: *> \verbatim
        !           166: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
        !           167: *>          The componentwise relative backward error of each solution
        !           168: *>          vector X(j) (i.e., the smallest relative change in
        !           169: *>          any element of A or B that makes X(j) an exact solution).
        !           170: *> \endverbatim
        !           171: *>
        !           172: *> \param[out] WORK
        !           173: *> \verbatim
        !           174: *>          WORK is COMPLEX*16 array, dimension (2*N)
        !           175: *> \endverbatim
        !           176: *>
        !           177: *> \param[out] RWORK
        !           178: *> \verbatim
        !           179: *>          RWORK is DOUBLE PRECISION array, dimension (N)
        !           180: *> \endverbatim
        !           181: *>
        !           182: *> \param[out] INFO
        !           183: *> \verbatim
        !           184: *>          INFO is INTEGER
        !           185: *>          = 0:  successful exit
        !           186: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           187: *> \endverbatim
        !           188: *
        !           189: *> \par Internal Parameters:
        !           190: *  =========================
        !           191: *>
        !           192: *> \verbatim
        !           193: *>  ITMAX is the maximum number of steps of iterative refinement.
        !           194: *> \endverbatim
        !           195: *
        !           196: *  Authors:
        !           197: *  ========
        !           198: *
        !           199: *> \author Univ. of Tennessee 
        !           200: *> \author Univ. of California Berkeley 
        !           201: *> \author Univ. of Colorado Denver 
        !           202: *> \author NAG Ltd. 
        !           203: *
        !           204: *> \date November 2011
        !           205: *
        !           206: *> \ingroup complex16OTHERcomputational
        !           207: *
        !           208: *  =====================================================================
1.1       bertrand  209:       SUBROUTINE ZGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
                    210:      $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
                    211:      $                   INFO )
                    212: *
1.8     ! bertrand  213: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  214: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    215: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  216: *     November 2011
1.1       bertrand  217: *
                    218: *     .. Scalar Arguments ..
                    219:       CHARACTER          TRANS
                    220:       INTEGER            INFO, LDB, LDX, N, NRHS
                    221: *     ..
                    222: *     .. Array Arguments ..
                    223:       INTEGER            IPIV( * )
                    224:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                    225:       COMPLEX*16         B( LDB, * ), D( * ), DF( * ), DL( * ),
                    226:      $                   DLF( * ), DU( * ), DU2( * ), DUF( * ),
                    227:      $                   WORK( * ), X( LDX, * )
                    228: *     ..
                    229: *
                    230: *  =====================================================================
                    231: *
                    232: *     .. Parameters ..
                    233:       INTEGER            ITMAX
                    234:       PARAMETER          ( ITMAX = 5 )
                    235:       DOUBLE PRECISION   ZERO, ONE
                    236:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    237:       DOUBLE PRECISION   TWO
                    238:       PARAMETER          ( TWO = 2.0D+0 )
                    239:       DOUBLE PRECISION   THREE
                    240:       PARAMETER          ( THREE = 3.0D+0 )
                    241: *     ..
                    242: *     .. Local Scalars ..
                    243:       LOGICAL            NOTRAN
                    244:       CHARACTER          TRANSN, TRANST
                    245:       INTEGER            COUNT, I, J, KASE, NZ
                    246:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
                    247:       COMPLEX*16         ZDUM
                    248: *     ..
                    249: *     .. Local Arrays ..
                    250:       INTEGER            ISAVE( 3 )
                    251: *     ..
                    252: *     .. External Subroutines ..
                    253:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGTTRS, ZLACN2, ZLAGTM
                    254: *     ..
                    255: *     .. Intrinsic Functions ..
                    256:       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, MAX
                    257: *     ..
                    258: *     .. External Functions ..
                    259:       LOGICAL            LSAME
                    260:       DOUBLE PRECISION   DLAMCH
                    261:       EXTERNAL           LSAME, DLAMCH
                    262: *     ..
                    263: *     .. Statement Functions ..
                    264:       DOUBLE PRECISION   CABS1
                    265: *     ..
                    266: *     .. Statement Function definitions ..
                    267:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    268: *     ..
                    269: *     .. Executable Statements ..
                    270: *
                    271: *     Test the input parameters.
                    272: *
                    273:       INFO = 0
                    274:       NOTRAN = LSAME( TRANS, 'N' )
                    275:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    276:      $    LSAME( TRANS, 'C' ) ) THEN
                    277:          INFO = -1
                    278:       ELSE IF( N.LT.0 ) THEN
                    279:          INFO = -2
                    280:       ELSE IF( NRHS.LT.0 ) THEN
                    281:          INFO = -3
                    282:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    283:          INFO = -13
                    284:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    285:          INFO = -15
                    286:       END IF
                    287:       IF( INFO.NE.0 ) THEN
                    288:          CALL XERBLA( 'ZGTRFS', -INFO )
                    289:          RETURN
                    290:       END IF
                    291: *
                    292: *     Quick return if possible
                    293: *
                    294:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    295:          DO 10 J = 1, NRHS
                    296:             FERR( J ) = ZERO
                    297:             BERR( J ) = ZERO
                    298:    10    CONTINUE
                    299:          RETURN
                    300:       END IF
                    301: *
                    302:       IF( NOTRAN ) THEN
                    303:          TRANSN = 'N'
                    304:          TRANST = 'C'
                    305:       ELSE
                    306:          TRANSN = 'C'
                    307:          TRANST = 'N'
                    308:       END IF
                    309: *
                    310: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    311: *
                    312:       NZ = 4
                    313:       EPS = DLAMCH( 'Epsilon' )
                    314:       SAFMIN = DLAMCH( 'Safe minimum' )
                    315:       SAFE1 = NZ*SAFMIN
                    316:       SAFE2 = SAFE1 / EPS
                    317: *
                    318: *     Do for each right hand side
                    319: *
                    320:       DO 110 J = 1, NRHS
                    321: *
                    322:          COUNT = 1
                    323:          LSTRES = THREE
                    324:    20    CONTINUE
                    325: *
                    326: *        Loop until stopping criterion is satisfied.
                    327: *
                    328: *        Compute residual R = B - op(A) * X,
                    329: *        where op(A) = A, A**T, or A**H, depending on TRANS.
                    330: *
                    331:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
                    332:          CALL ZLAGTM( TRANS, N, 1, -ONE, DL, D, DU, X( 1, J ), LDX, ONE,
                    333:      $                WORK, N )
                    334: *
                    335: *        Compute abs(op(A))*abs(x) + abs(b) for use in the backward
                    336: *        error bound.
                    337: *
                    338:          IF( NOTRAN ) THEN
                    339:             IF( N.EQ.1 ) THEN
                    340:                RWORK( 1 ) = CABS1( B( 1, J ) ) +
                    341:      $                      CABS1( D( 1 ) )*CABS1( X( 1, J ) )
                    342:             ELSE
                    343:                RWORK( 1 ) = CABS1( B( 1, J ) ) +
                    344:      $                      CABS1( D( 1 ) )*CABS1( X( 1, J ) ) +
                    345:      $                      CABS1( DU( 1 ) )*CABS1( X( 2, J ) )
                    346:                DO 30 I = 2, N - 1
                    347:                   RWORK( I ) = CABS1( B( I, J ) ) +
                    348:      $                         CABS1( DL( I-1 ) )*CABS1( X( I-1, J ) ) +
                    349:      $                         CABS1( D( I ) )*CABS1( X( I, J ) ) +
                    350:      $                         CABS1( DU( I ) )*CABS1( X( I+1, J ) )
                    351:    30          CONTINUE
                    352:                RWORK( N ) = CABS1( B( N, J ) ) +
                    353:      $                      CABS1( DL( N-1 ) )*CABS1( X( N-1, J ) ) +
                    354:      $                      CABS1( D( N ) )*CABS1( X( N, J ) )
                    355:             END IF
                    356:          ELSE
                    357:             IF( N.EQ.1 ) THEN
                    358:                RWORK( 1 ) = CABS1( B( 1, J ) ) +
                    359:      $                      CABS1( D( 1 ) )*CABS1( X( 1, J ) )
                    360:             ELSE
                    361:                RWORK( 1 ) = CABS1( B( 1, J ) ) +
                    362:      $                      CABS1( D( 1 ) )*CABS1( X( 1, J ) ) +
                    363:      $                      CABS1( DL( 1 ) )*CABS1( X( 2, J ) )
                    364:                DO 40 I = 2, N - 1
                    365:                   RWORK( I ) = CABS1( B( I, J ) ) +
                    366:      $                         CABS1( DU( I-1 ) )*CABS1( X( I-1, J ) ) +
                    367:      $                         CABS1( D( I ) )*CABS1( X( I, J ) ) +
                    368:      $                         CABS1( DL( I ) )*CABS1( X( I+1, J ) )
                    369:    40          CONTINUE
                    370:                RWORK( N ) = CABS1( B( N, J ) ) +
                    371:      $                      CABS1( DU( N-1 ) )*CABS1( X( N-1, J ) ) +
                    372:      $                      CABS1( D( N ) )*CABS1( X( N, J ) )
                    373:             END IF
                    374:          END IF
                    375: *
                    376: *        Compute componentwise relative backward error from formula
                    377: *
                    378: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
                    379: *
                    380: *        where abs(Z) is the componentwise absolute value of the matrix
                    381: *        or vector Z.  If the i-th component of the denominator is less
                    382: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    383: *        numerator and denominator before dividing.
                    384: *
                    385:          S = ZERO
                    386:          DO 50 I = 1, N
                    387:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    388:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
                    389:             ELSE
                    390:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
                    391:      $             ( RWORK( I )+SAFE1 ) )
                    392:             END IF
                    393:    50    CONTINUE
                    394:          BERR( J ) = S
                    395: *
                    396: *        Test stopping criterion. Continue iterating if
                    397: *           1) The residual BERR(J) is larger than machine epsilon, and
                    398: *           2) BERR(J) decreased by at least a factor of 2 during the
                    399: *              last iteration, and
                    400: *           3) At most ITMAX iterations tried.
                    401: *
                    402:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    403:      $       COUNT.LE.ITMAX ) THEN
                    404: *
                    405: *           Update solution and try again.
                    406: *
                    407:             CALL ZGTTRS( TRANS, N, 1, DLF, DF, DUF, DU2, IPIV, WORK, N,
                    408:      $                   INFO )
                    409:             CALL ZAXPY( N, DCMPLX( ONE ), WORK, 1, X( 1, J ), 1 )
                    410:             LSTRES = BERR( J )
                    411:             COUNT = COUNT + 1
                    412:             GO TO 20
                    413:          END IF
                    414: *
                    415: *        Bound error from formula
                    416: *
                    417: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    418: *        norm( abs(inv(op(A)))*
                    419: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
                    420: *
                    421: *        where
                    422: *          norm(Z) is the magnitude of the largest component of Z
                    423: *          inv(op(A)) is the inverse of op(A)
                    424: *          abs(Z) is the componentwise absolute value of the matrix or
                    425: *             vector Z
                    426: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    427: *          EPS is machine epsilon
                    428: *
                    429: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
                    430: *        is incremented by SAFE1 if the i-th component of
                    431: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
                    432: *
                    433: *        Use ZLACN2 to estimate the infinity-norm of the matrix
                    434: *           inv(op(A)) * diag(W),
                    435: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
                    436: *
                    437:          DO 60 I = 1, N
                    438:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    439:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
                    440:             ELSE
                    441:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
                    442:      $                      SAFE1
                    443:             END IF
                    444:    60    CONTINUE
                    445: *
                    446:          KASE = 0
                    447:    70    CONTINUE
                    448:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
                    449:          IF( KASE.NE.0 ) THEN
                    450:             IF( KASE.EQ.1 ) THEN
                    451: *
                    452: *              Multiply by diag(W)*inv(op(A)**H).
                    453: *
                    454:                CALL ZGTTRS( TRANST, N, 1, DLF, DF, DUF, DU2, IPIV, WORK,
                    455:      $                      N, INFO )
                    456:                DO 80 I = 1, N
                    457:                   WORK( I ) = RWORK( I )*WORK( I )
                    458:    80          CONTINUE
                    459:             ELSE
                    460: *
                    461: *              Multiply by inv(op(A))*diag(W).
                    462: *
                    463:                DO 90 I = 1, N
                    464:                   WORK( I ) = RWORK( I )*WORK( I )
                    465:    90          CONTINUE
                    466:                CALL ZGTTRS( TRANSN, N, 1, DLF, DF, DUF, DU2, IPIV, WORK,
                    467:      $                      N, INFO )
                    468:             END IF
                    469:             GO TO 70
                    470:          END IF
                    471: *
                    472: *        Normalize error.
                    473: *
                    474:          LSTRES = ZERO
                    475:          DO 100 I = 1, N
                    476:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
                    477:   100    CONTINUE
                    478:          IF( LSTRES.NE.ZERO )
                    479:      $      FERR( J ) = FERR( J ) / LSTRES
                    480: *
                    481:   110 CONTINUE
                    482: *
                    483:       RETURN
                    484: *
                    485: *     End of ZGTRFS
                    486: *
                    487:       END

CVSweb interface <joel.bertrand@systella.fr>