Annotation of rpl/lapack/lapack/zgtrfs.f, revision 1.18

1.8       bertrand    1: *> \brief \b ZGTRFS
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZGTRFS + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgtrfs.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgtrfs.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgtrfs.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
                     22: *                          IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
                     23: *                          INFO )
1.15      bertrand   24: *
1.8       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          TRANS
                     27: *       INTEGER            INFO, LDB, LDX, N, NRHS
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       INTEGER            IPIV( * )
                     31: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                     32: *       COMPLEX*16         B( LDB, * ), D( * ), DF( * ), DL( * ),
                     33: *      $                   DLF( * ), DU( * ), DU2( * ), DUF( * ),
                     34: *      $                   WORK( * ), X( LDX, * )
                     35: *       ..
1.15      bertrand   36: *
1.8       bertrand   37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> ZGTRFS improves the computed solution to a system of linear
                     44: *> equations when the coefficient matrix is tridiagonal, and provides
                     45: *> error bounds and backward error estimates for the solution.
                     46: *> \endverbatim
                     47: *
                     48: *  Arguments:
                     49: *  ==========
                     50: *
                     51: *> \param[in] TRANS
                     52: *> \verbatim
                     53: *>          TRANS is CHARACTER*1
                     54: *>          Specifies the form of the system of equations:
                     55: *>          = 'N':  A * X = B     (No transpose)
                     56: *>          = 'T':  A**T * X = B  (Transpose)
                     57: *>          = 'C':  A**H * X = B  (Conjugate transpose)
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] N
                     61: *> \verbatim
                     62: *>          N is INTEGER
                     63: *>          The order of the matrix A.  N >= 0.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] NRHS
                     67: *> \verbatim
                     68: *>          NRHS is INTEGER
                     69: *>          The number of right hand sides, i.e., the number of columns
                     70: *>          of the matrix B.  NRHS >= 0.
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[in] DL
                     74: *> \verbatim
                     75: *>          DL is COMPLEX*16 array, dimension (N-1)
                     76: *>          The (n-1) subdiagonal elements of A.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in] D
                     80: *> \verbatim
                     81: *>          D is COMPLEX*16 array, dimension (N)
                     82: *>          The diagonal elements of A.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] DU
                     86: *> \verbatim
                     87: *>          DU is COMPLEX*16 array, dimension (N-1)
                     88: *>          The (n-1) superdiagonal elements of A.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] DLF
                     92: *> \verbatim
                     93: *>          DLF is COMPLEX*16 array, dimension (N-1)
                     94: *>          The (n-1) multipliers that define the matrix L from the
                     95: *>          LU factorization of A as computed by ZGTTRF.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] DF
                     99: *> \verbatim
                    100: *>          DF is COMPLEX*16 array, dimension (N)
                    101: *>          The n diagonal elements of the upper triangular matrix U from
                    102: *>          the LU factorization of A.
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] DUF
                    106: *> \verbatim
                    107: *>          DUF is COMPLEX*16 array, dimension (N-1)
                    108: *>          The (n-1) elements of the first superdiagonal of U.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[in] DU2
                    112: *> \verbatim
                    113: *>          DU2 is COMPLEX*16 array, dimension (N-2)
                    114: *>          The (n-2) elements of the second superdiagonal of U.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in] IPIV
                    118: *> \verbatim
                    119: *>          IPIV is INTEGER array, dimension (N)
                    120: *>          The pivot indices; for 1 <= i <= n, row i of the matrix was
                    121: *>          interchanged with row IPIV(i).  IPIV(i) will always be either
                    122: *>          i or i+1; IPIV(i) = i indicates a row interchange was not
                    123: *>          required.
                    124: *> \endverbatim
                    125: *>
                    126: *> \param[in] B
                    127: *> \verbatim
                    128: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    129: *>          The right hand side matrix B.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in] LDB
                    133: *> \verbatim
                    134: *>          LDB is INTEGER
                    135: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[in,out] X
                    139: *> \verbatim
                    140: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    141: *>          On entry, the solution matrix X, as computed by ZGTTRS.
                    142: *>          On exit, the improved solution matrix X.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in] LDX
                    146: *> \verbatim
                    147: *>          LDX is INTEGER
                    148: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    149: *> \endverbatim
                    150: *>
                    151: *> \param[out] FERR
                    152: *> \verbatim
                    153: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    154: *>          The estimated forward error bound for each solution vector
                    155: *>          X(j) (the j-th column of the solution matrix X).
                    156: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    157: *>          is an estimated upper bound for the magnitude of the largest
                    158: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    159: *>          largest element in X(j).  The estimate is as reliable as
                    160: *>          the estimate for RCOND, and is almost always a slight
                    161: *>          overestimate of the true error.
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[out] BERR
                    165: *> \verbatim
                    166: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    167: *>          The componentwise relative backward error of each solution
                    168: *>          vector X(j) (i.e., the smallest relative change in
                    169: *>          any element of A or B that makes X(j) an exact solution).
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[out] WORK
                    173: *> \verbatim
                    174: *>          WORK is COMPLEX*16 array, dimension (2*N)
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[out] RWORK
                    178: *> \verbatim
                    179: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    180: *> \endverbatim
                    181: *>
                    182: *> \param[out] INFO
                    183: *> \verbatim
                    184: *>          INFO is INTEGER
                    185: *>          = 0:  successful exit
                    186: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    187: *> \endverbatim
                    188: *
                    189: *> \par Internal Parameters:
                    190: *  =========================
                    191: *>
                    192: *> \verbatim
                    193: *>  ITMAX is the maximum number of steps of iterative refinement.
                    194: *> \endverbatim
                    195: *
                    196: *  Authors:
                    197: *  ========
                    198: *
1.15      bertrand  199: *> \author Univ. of Tennessee
                    200: *> \author Univ. of California Berkeley
                    201: *> \author Univ. of Colorado Denver
                    202: *> \author NAG Ltd.
1.8       bertrand  203: *
1.11      bertrand  204: *> \ingroup complex16GTcomputational
1.8       bertrand  205: *
                    206: *  =====================================================================
1.1       bertrand  207:       SUBROUTINE ZGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
                    208:      $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
                    209:      $                   INFO )
                    210: *
1.18    ! bertrand  211: *  -- LAPACK computational routine --
1.1       bertrand  212: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    213: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    214: *
                    215: *     .. Scalar Arguments ..
                    216:       CHARACTER          TRANS
                    217:       INTEGER            INFO, LDB, LDX, N, NRHS
                    218: *     ..
                    219: *     .. Array Arguments ..
                    220:       INTEGER            IPIV( * )
                    221:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                    222:       COMPLEX*16         B( LDB, * ), D( * ), DF( * ), DL( * ),
                    223:      $                   DLF( * ), DU( * ), DU2( * ), DUF( * ),
                    224:      $                   WORK( * ), X( LDX, * )
                    225: *     ..
                    226: *
                    227: *  =====================================================================
                    228: *
                    229: *     .. Parameters ..
                    230:       INTEGER            ITMAX
                    231:       PARAMETER          ( ITMAX = 5 )
                    232:       DOUBLE PRECISION   ZERO, ONE
                    233:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    234:       DOUBLE PRECISION   TWO
                    235:       PARAMETER          ( TWO = 2.0D+0 )
                    236:       DOUBLE PRECISION   THREE
                    237:       PARAMETER          ( THREE = 3.0D+0 )
                    238: *     ..
                    239: *     .. Local Scalars ..
                    240:       LOGICAL            NOTRAN
                    241:       CHARACTER          TRANSN, TRANST
                    242:       INTEGER            COUNT, I, J, KASE, NZ
                    243:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
                    244:       COMPLEX*16         ZDUM
                    245: *     ..
                    246: *     .. Local Arrays ..
                    247:       INTEGER            ISAVE( 3 )
                    248: *     ..
                    249: *     .. External Subroutines ..
                    250:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGTTRS, ZLACN2, ZLAGTM
                    251: *     ..
                    252: *     .. Intrinsic Functions ..
                    253:       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, MAX
                    254: *     ..
                    255: *     .. External Functions ..
                    256:       LOGICAL            LSAME
                    257:       DOUBLE PRECISION   DLAMCH
                    258:       EXTERNAL           LSAME, DLAMCH
                    259: *     ..
                    260: *     .. Statement Functions ..
                    261:       DOUBLE PRECISION   CABS1
                    262: *     ..
                    263: *     .. Statement Function definitions ..
                    264:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    265: *     ..
                    266: *     .. Executable Statements ..
                    267: *
                    268: *     Test the input parameters.
                    269: *
                    270:       INFO = 0
                    271:       NOTRAN = LSAME( TRANS, 'N' )
                    272:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    273:      $    LSAME( TRANS, 'C' ) ) THEN
                    274:          INFO = -1
                    275:       ELSE IF( N.LT.0 ) THEN
                    276:          INFO = -2
                    277:       ELSE IF( NRHS.LT.0 ) THEN
                    278:          INFO = -3
                    279:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    280:          INFO = -13
                    281:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    282:          INFO = -15
                    283:       END IF
                    284:       IF( INFO.NE.0 ) THEN
                    285:          CALL XERBLA( 'ZGTRFS', -INFO )
                    286:          RETURN
                    287:       END IF
                    288: *
                    289: *     Quick return if possible
                    290: *
                    291:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    292:          DO 10 J = 1, NRHS
                    293:             FERR( J ) = ZERO
                    294:             BERR( J ) = ZERO
                    295:    10    CONTINUE
                    296:          RETURN
                    297:       END IF
                    298: *
                    299:       IF( NOTRAN ) THEN
                    300:          TRANSN = 'N'
                    301:          TRANST = 'C'
                    302:       ELSE
                    303:          TRANSN = 'C'
                    304:          TRANST = 'N'
                    305:       END IF
                    306: *
                    307: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    308: *
                    309:       NZ = 4
                    310:       EPS = DLAMCH( 'Epsilon' )
                    311:       SAFMIN = DLAMCH( 'Safe minimum' )
                    312:       SAFE1 = NZ*SAFMIN
                    313:       SAFE2 = SAFE1 / EPS
                    314: *
                    315: *     Do for each right hand side
                    316: *
                    317:       DO 110 J = 1, NRHS
                    318: *
                    319:          COUNT = 1
                    320:          LSTRES = THREE
                    321:    20    CONTINUE
                    322: *
                    323: *        Loop until stopping criterion is satisfied.
                    324: *
                    325: *        Compute residual R = B - op(A) * X,
                    326: *        where op(A) = A, A**T, or A**H, depending on TRANS.
                    327: *
                    328:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
                    329:          CALL ZLAGTM( TRANS, N, 1, -ONE, DL, D, DU, X( 1, J ), LDX, ONE,
                    330:      $                WORK, N )
                    331: *
                    332: *        Compute abs(op(A))*abs(x) + abs(b) for use in the backward
                    333: *        error bound.
                    334: *
                    335:          IF( NOTRAN ) THEN
                    336:             IF( N.EQ.1 ) THEN
                    337:                RWORK( 1 ) = CABS1( B( 1, J ) ) +
                    338:      $                      CABS1( D( 1 ) )*CABS1( X( 1, J ) )
                    339:             ELSE
                    340:                RWORK( 1 ) = CABS1( B( 1, J ) ) +
                    341:      $                      CABS1( D( 1 ) )*CABS1( X( 1, J ) ) +
                    342:      $                      CABS1( DU( 1 ) )*CABS1( X( 2, J ) )
                    343:                DO 30 I = 2, N - 1
                    344:                   RWORK( I ) = CABS1( B( I, J ) ) +
                    345:      $                         CABS1( DL( I-1 ) )*CABS1( X( I-1, J ) ) +
                    346:      $                         CABS1( D( I ) )*CABS1( X( I, J ) ) +
                    347:      $                         CABS1( DU( I ) )*CABS1( X( I+1, J ) )
                    348:    30          CONTINUE
                    349:                RWORK( N ) = CABS1( B( N, J ) ) +
                    350:      $                      CABS1( DL( N-1 ) )*CABS1( X( N-1, J ) ) +
                    351:      $                      CABS1( D( N ) )*CABS1( X( N, J ) )
                    352:             END IF
                    353:          ELSE
                    354:             IF( N.EQ.1 ) THEN
                    355:                RWORK( 1 ) = CABS1( B( 1, J ) ) +
                    356:      $                      CABS1( D( 1 ) )*CABS1( X( 1, J ) )
                    357:             ELSE
                    358:                RWORK( 1 ) = CABS1( B( 1, J ) ) +
                    359:      $                      CABS1( D( 1 ) )*CABS1( X( 1, J ) ) +
                    360:      $                      CABS1( DL( 1 ) )*CABS1( X( 2, J ) )
                    361:                DO 40 I = 2, N - 1
                    362:                   RWORK( I ) = CABS1( B( I, J ) ) +
                    363:      $                         CABS1( DU( I-1 ) )*CABS1( X( I-1, J ) ) +
                    364:      $                         CABS1( D( I ) )*CABS1( X( I, J ) ) +
                    365:      $                         CABS1( DL( I ) )*CABS1( X( I+1, J ) )
                    366:    40          CONTINUE
                    367:                RWORK( N ) = CABS1( B( N, J ) ) +
                    368:      $                      CABS1( DU( N-1 ) )*CABS1( X( N-1, J ) ) +
                    369:      $                      CABS1( D( N ) )*CABS1( X( N, J ) )
                    370:             END IF
                    371:          END IF
                    372: *
                    373: *        Compute componentwise relative backward error from formula
                    374: *
                    375: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
                    376: *
                    377: *        where abs(Z) is the componentwise absolute value of the matrix
                    378: *        or vector Z.  If the i-th component of the denominator is less
                    379: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    380: *        numerator and denominator before dividing.
                    381: *
                    382:          S = ZERO
                    383:          DO 50 I = 1, N
                    384:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    385:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
                    386:             ELSE
                    387:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
                    388:      $             ( RWORK( I )+SAFE1 ) )
                    389:             END IF
                    390:    50    CONTINUE
                    391:          BERR( J ) = S
                    392: *
                    393: *        Test stopping criterion. Continue iterating if
                    394: *           1) The residual BERR(J) is larger than machine epsilon, and
                    395: *           2) BERR(J) decreased by at least a factor of 2 during the
                    396: *              last iteration, and
                    397: *           3) At most ITMAX iterations tried.
                    398: *
                    399:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    400:      $       COUNT.LE.ITMAX ) THEN
                    401: *
                    402: *           Update solution and try again.
                    403: *
                    404:             CALL ZGTTRS( TRANS, N, 1, DLF, DF, DUF, DU2, IPIV, WORK, N,
                    405:      $                   INFO )
                    406:             CALL ZAXPY( N, DCMPLX( ONE ), WORK, 1, X( 1, J ), 1 )
                    407:             LSTRES = BERR( J )
                    408:             COUNT = COUNT + 1
                    409:             GO TO 20
                    410:          END IF
                    411: *
                    412: *        Bound error from formula
                    413: *
                    414: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    415: *        norm( abs(inv(op(A)))*
                    416: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
                    417: *
                    418: *        where
                    419: *          norm(Z) is the magnitude of the largest component of Z
                    420: *          inv(op(A)) is the inverse of op(A)
                    421: *          abs(Z) is the componentwise absolute value of the matrix or
                    422: *             vector Z
                    423: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    424: *          EPS is machine epsilon
                    425: *
                    426: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
                    427: *        is incremented by SAFE1 if the i-th component of
                    428: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
                    429: *
                    430: *        Use ZLACN2 to estimate the infinity-norm of the matrix
                    431: *           inv(op(A)) * diag(W),
                    432: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
                    433: *
                    434:          DO 60 I = 1, N
                    435:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    436:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
                    437:             ELSE
                    438:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
                    439:      $                      SAFE1
                    440:             END IF
                    441:    60    CONTINUE
                    442: *
                    443:          KASE = 0
                    444:    70    CONTINUE
                    445:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
                    446:          IF( KASE.NE.0 ) THEN
                    447:             IF( KASE.EQ.1 ) THEN
                    448: *
                    449: *              Multiply by diag(W)*inv(op(A)**H).
                    450: *
                    451:                CALL ZGTTRS( TRANST, N, 1, DLF, DF, DUF, DU2, IPIV, WORK,
                    452:      $                      N, INFO )
                    453:                DO 80 I = 1, N
                    454:                   WORK( I ) = RWORK( I )*WORK( I )
                    455:    80          CONTINUE
                    456:             ELSE
                    457: *
                    458: *              Multiply by inv(op(A))*diag(W).
                    459: *
                    460:                DO 90 I = 1, N
                    461:                   WORK( I ) = RWORK( I )*WORK( I )
                    462:    90          CONTINUE
                    463:                CALL ZGTTRS( TRANSN, N, 1, DLF, DF, DUF, DU2, IPIV, WORK,
                    464:      $                      N, INFO )
                    465:             END IF
                    466:             GO TO 70
                    467:          END IF
                    468: *
                    469: *        Normalize error.
                    470: *
                    471:          LSTRES = ZERO
                    472:          DO 100 I = 1, N
                    473:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
                    474:   100    CONTINUE
                    475:          IF( LSTRES.NE.ZERO )
                    476:      $      FERR( J ) = FERR( J ) / LSTRES
                    477: *
                    478:   110 CONTINUE
                    479: *
                    480:       RETURN
                    481: *
                    482: *     End of ZGTRFS
                    483: *
                    484:       END

CVSweb interface <joel.bertrand@systella.fr>