File:  [local] / rpl / lapack / lapack / zggsvp.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:14 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
    2:      $                   TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
    3:      $                   IWORK, RWORK, TAU, WORK, INFO )
    4: *
    5: *  -- LAPACK routine (version 3.3.1) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *  -- April 2011                                                      --
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBQ, JOBU, JOBV
   12:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
   13:       DOUBLE PRECISION   TOLA, TOLB
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IWORK( * )
   17:       DOUBLE PRECISION   RWORK( * )
   18:       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
   19:      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  ZGGSVP computes unitary matrices U, V and Q such that
   26: *
   27: *                     N-K-L  K    L
   28: *   U**H*A*Q =     K ( 0    A12  A13 )  if M-K-L >= 0;
   29: *                  L ( 0     0   A23 )
   30: *              M-K-L ( 0     0    0  )
   31: *
   32: *                   N-K-L  K    L
   33: *          =     K ( 0    A12  A13 )  if M-K-L < 0;
   34: *              M-K ( 0     0   A23 )
   35: *
   36: *                   N-K-L  K    L
   37: *   V**H*B*Q =   L ( 0     0   B13 )
   38: *              P-L ( 0     0    0  )
   39: *
   40: *  where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
   41: *  upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
   42: *  otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective
   43: *  numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H. 
   44: *
   45: *  This decomposition is the preprocessing step for computing the
   46: *  Generalized Singular Value Decomposition (GSVD), see subroutine
   47: *  ZGGSVD.
   48: *
   49: *  Arguments
   50: *  =========
   51: *
   52: *  JOBU    (input) CHARACTER*1
   53: *          = 'U':  Unitary matrix U is computed;
   54: *          = 'N':  U is not computed.
   55: *
   56: *  JOBV    (input) CHARACTER*1
   57: *          = 'V':  Unitary matrix V is computed;
   58: *          = 'N':  V is not computed.
   59: *
   60: *  JOBQ    (input) CHARACTER*1
   61: *          = 'Q':  Unitary matrix Q is computed;
   62: *          = 'N':  Q is not computed.
   63: *
   64: *  M       (input) INTEGER
   65: *          The number of rows of the matrix A.  M >= 0.
   66: *
   67: *  P       (input) INTEGER
   68: *          The number of rows of the matrix B.  P >= 0.
   69: *
   70: *  N       (input) INTEGER
   71: *          The number of columns of the matrices A and B.  N >= 0.
   72: *
   73: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
   74: *          On entry, the M-by-N matrix A.
   75: *          On exit, A contains the triangular (or trapezoidal) matrix
   76: *          described in the Purpose section.
   77: *
   78: *  LDA     (input) INTEGER
   79: *          The leading dimension of the array A. LDA >= max(1,M).
   80: *
   81: *  B       (input/output) COMPLEX*16 array, dimension (LDB,N)
   82: *          On entry, the P-by-N matrix B.
   83: *          On exit, B contains the triangular matrix described in
   84: *          the Purpose section.
   85: *
   86: *  LDB     (input) INTEGER
   87: *          The leading dimension of the array B. LDB >= max(1,P).
   88: *
   89: *  TOLA    (input) DOUBLE PRECISION
   90: *  TOLB    (input) DOUBLE PRECISION
   91: *          TOLA and TOLB are the thresholds to determine the effective
   92: *          numerical rank of matrix B and a subblock of A. Generally,
   93: *          they are set to
   94: *             TOLA = MAX(M,N)*norm(A)*MAZHEPS,
   95: *             TOLB = MAX(P,N)*norm(B)*MAZHEPS.
   96: *          The size of TOLA and TOLB may affect the size of backward
   97: *          errors of the decomposition.
   98: *
   99: *  K       (output) INTEGER
  100: *  L       (output) INTEGER
  101: *          On exit, K and L specify the dimension of the subblocks
  102: *          described in Purpose section.
  103: *          K + L = effective numerical rank of (A**H,B**H)**H.
  104: *
  105: *  U       (output) COMPLEX*16 array, dimension (LDU,M)
  106: *          If JOBU = 'U', U contains the unitary matrix U.
  107: *          If JOBU = 'N', U is not referenced.
  108: *
  109: *  LDU     (input) INTEGER
  110: *          The leading dimension of the array U. LDU >= max(1,M) if
  111: *          JOBU = 'U'; LDU >= 1 otherwise.
  112: *
  113: *  V       (output) COMPLEX*16 array, dimension (LDV,P)
  114: *          If JOBV = 'V', V contains the unitary matrix V.
  115: *          If JOBV = 'N', V is not referenced.
  116: *
  117: *  LDV     (input) INTEGER
  118: *          The leading dimension of the array V. LDV >= max(1,P) if
  119: *          JOBV = 'V'; LDV >= 1 otherwise.
  120: *
  121: *  Q       (output) COMPLEX*16 array, dimension (LDQ,N)
  122: *          If JOBQ = 'Q', Q contains the unitary matrix Q.
  123: *          If JOBQ = 'N', Q is not referenced.
  124: *
  125: *  LDQ     (input) INTEGER
  126: *          The leading dimension of the array Q. LDQ >= max(1,N) if
  127: *          JOBQ = 'Q'; LDQ >= 1 otherwise.
  128: *
  129: *  IWORK   (workspace) INTEGER array, dimension (N)
  130: *
  131: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
  132: *
  133: *  TAU     (workspace) COMPLEX*16 array, dimension (N)
  134: *
  135: *  WORK    (workspace) COMPLEX*16 array, dimension (max(3*N,M,P))
  136: *
  137: *  INFO    (output) INTEGER
  138: *          = 0:  successful exit
  139: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  140: *
  141: *  Further Details
  142: *  ===============
  143: *
  144: *  The subroutine uses LAPACK subroutine ZGEQPF for the QR factorization
  145: *  with column pivoting to detect the effective numerical rank of the
  146: *  a matrix. It may be replaced by a better rank determination strategy.
  147: *
  148: *  =====================================================================
  149: *
  150: *     .. Parameters ..
  151:       COMPLEX*16         CZERO, CONE
  152:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  153:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  154: *     ..
  155: *     .. Local Scalars ..
  156:       LOGICAL            FORWRD, WANTQ, WANTU, WANTV
  157:       INTEGER            I, J
  158:       COMPLEX*16         T
  159: *     ..
  160: *     .. External Functions ..
  161:       LOGICAL            LSAME
  162:       EXTERNAL           LSAME
  163: *     ..
  164: *     .. External Subroutines ..
  165:       EXTERNAL           XERBLA, ZGEQPF, ZGEQR2, ZGERQ2, ZLACPY, ZLAPMT,
  166:      $                   ZLASET, ZUNG2R, ZUNM2R, ZUNMR2
  167: *     ..
  168: *     .. Intrinsic Functions ..
  169:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
  170: *     ..
  171: *     .. Statement Functions ..
  172:       DOUBLE PRECISION   CABS1
  173: *     ..
  174: *     .. Statement Function definitions ..
  175:       CABS1( T ) = ABS( DBLE( T ) ) + ABS( DIMAG( T ) )
  176: *     ..
  177: *     .. Executable Statements ..
  178: *
  179: *     Test the input parameters
  180: *
  181:       WANTU = LSAME( JOBU, 'U' )
  182:       WANTV = LSAME( JOBV, 'V' )
  183:       WANTQ = LSAME( JOBQ, 'Q' )
  184:       FORWRD = .TRUE.
  185: *
  186:       INFO = 0
  187:       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
  188:          INFO = -1
  189:       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  190:          INFO = -2
  191:       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
  192:          INFO = -3
  193:       ELSE IF( M.LT.0 ) THEN
  194:          INFO = -4
  195:       ELSE IF( P.LT.0 ) THEN
  196:          INFO = -5
  197:       ELSE IF( N.LT.0 ) THEN
  198:          INFO = -6
  199:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  200:          INFO = -8
  201:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  202:          INFO = -10
  203:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
  204:          INFO = -16
  205:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
  206:          INFO = -18
  207:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  208:          INFO = -20
  209:       END IF
  210:       IF( INFO.NE.0 ) THEN
  211:          CALL XERBLA( 'ZGGSVP', -INFO )
  212:          RETURN
  213:       END IF
  214: *
  215: *     QR with column pivoting of B: B*P = V*( S11 S12 )
  216: *                                           (  0   0  )
  217: *
  218:       DO 10 I = 1, N
  219:          IWORK( I ) = 0
  220:    10 CONTINUE
  221:       CALL ZGEQPF( P, N, B, LDB, IWORK, TAU, WORK, RWORK, INFO )
  222: *
  223: *     Update A := A*P
  224: *
  225:       CALL ZLAPMT( FORWRD, M, N, A, LDA, IWORK )
  226: *
  227: *     Determine the effective rank of matrix B.
  228: *
  229:       L = 0
  230:       DO 20 I = 1, MIN( P, N )
  231:          IF( CABS1( B( I, I ) ).GT.TOLB )
  232:      $      L = L + 1
  233:    20 CONTINUE
  234: *
  235:       IF( WANTV ) THEN
  236: *
  237: *        Copy the details of V, and form V.
  238: *
  239:          CALL ZLASET( 'Full', P, P, CZERO, CZERO, V, LDV )
  240:          IF( P.GT.1 )
  241:      $      CALL ZLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
  242:      $                   LDV )
  243:          CALL ZUNG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
  244:       END IF
  245: *
  246: *     Clean up B
  247: *
  248:       DO 40 J = 1, L - 1
  249:          DO 30 I = J + 1, L
  250:             B( I, J ) = CZERO
  251:    30    CONTINUE
  252:    40 CONTINUE
  253:       IF( P.GT.L )
  254:      $   CALL ZLASET( 'Full', P-L, N, CZERO, CZERO, B( L+1, 1 ), LDB )
  255: *
  256:       IF( WANTQ ) THEN
  257: *
  258: *        Set Q = I and Update Q := Q*P
  259: *
  260:          CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
  261:          CALL ZLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
  262:       END IF
  263: *
  264:       IF( P.GE.L .AND. N.NE.L ) THEN
  265: *
  266: *        RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z
  267: *
  268:          CALL ZGERQ2( L, N, B, LDB, TAU, WORK, INFO )
  269: *
  270: *        Update A := A*Z**H
  271: *
  272:          CALL ZUNMR2( 'Right', 'Conjugate transpose', M, N, L, B, LDB,
  273:      $                TAU, A, LDA, WORK, INFO )
  274:          IF( WANTQ ) THEN
  275: *
  276: *           Update Q := Q*Z**H
  277: *
  278:             CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N, L, B,
  279:      $                   LDB, TAU, Q, LDQ, WORK, INFO )
  280:          END IF
  281: *
  282: *        Clean up B
  283: *
  284:          CALL ZLASET( 'Full', L, N-L, CZERO, CZERO, B, LDB )
  285:          DO 60 J = N - L + 1, N
  286:             DO 50 I = J - N + L + 1, L
  287:                B( I, J ) = CZERO
  288:    50       CONTINUE
  289:    60    CONTINUE
  290: *
  291:       END IF
  292: *
  293: *     Let              N-L     L
  294: *                A = ( A11    A12 ) M,
  295: *
  296: *     then the following does the complete QR decomposition of A11:
  297: *
  298: *              A11 = U*(  0  T12 )*P1**H
  299: *                      (  0   0  )
  300: *
  301:       DO 70 I = 1, N - L
  302:          IWORK( I ) = 0
  303:    70 CONTINUE
  304:       CALL ZGEQPF( M, N-L, A, LDA, IWORK, TAU, WORK, RWORK, INFO )
  305: *
  306: *     Determine the effective rank of A11
  307: *
  308:       K = 0
  309:       DO 80 I = 1, MIN( M, N-L )
  310:          IF( CABS1( A( I, I ) ).GT.TOLA )
  311:      $      K = K + 1
  312:    80 CONTINUE
  313: *
  314: *     Update A12 := U**H*A12, where A12 = A( 1:M, N-L+1:N )
  315: *
  316:       CALL ZUNM2R( 'Left', 'Conjugate transpose', M, L, MIN( M, N-L ),
  317:      $             A, LDA, TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
  318: *
  319:       IF( WANTU ) THEN
  320: *
  321: *        Copy the details of U, and form U
  322: *
  323:          CALL ZLASET( 'Full', M, M, CZERO, CZERO, U, LDU )
  324:          IF( M.GT.1 )
  325:      $      CALL ZLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
  326:      $                   LDU )
  327:          CALL ZUNG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
  328:       END IF
  329: *
  330:       IF( WANTQ ) THEN
  331: *
  332: *        Update Q( 1:N, 1:N-L )  = Q( 1:N, 1:N-L )*P1
  333: *
  334:          CALL ZLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
  335:       END IF
  336: *
  337: *     Clean up A: set the strictly lower triangular part of
  338: *     A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
  339: *
  340:       DO 100 J = 1, K - 1
  341:          DO 90 I = J + 1, K
  342:             A( I, J ) = CZERO
  343:    90    CONTINUE
  344:   100 CONTINUE
  345:       IF( M.GT.K )
  346:      $   CALL ZLASET( 'Full', M-K, N-L, CZERO, CZERO, A( K+1, 1 ), LDA )
  347: *
  348:       IF( N-L.GT.K ) THEN
  349: *
  350: *        RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
  351: *
  352:          CALL ZGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
  353: *
  354:          IF( WANTQ ) THEN
  355: *
  356: *           Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**H
  357: *
  358:             CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N-L, K, A,
  359:      $                   LDA, TAU, Q, LDQ, WORK, INFO )
  360:          END IF
  361: *
  362: *        Clean up A
  363: *
  364:          CALL ZLASET( 'Full', K, N-L-K, CZERO, CZERO, A, LDA )
  365:          DO 120 J = N - L - K + 1, N - L
  366:             DO 110 I = J - N + L + K + 1, K
  367:                A( I, J ) = CZERO
  368:   110       CONTINUE
  369:   120    CONTINUE
  370: *
  371:       END IF
  372: *
  373:       IF( M.GT.K ) THEN
  374: *
  375: *        QR factorization of A( K+1:M,N-L+1:N )
  376: *
  377:          CALL ZGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
  378: *
  379:          IF( WANTU ) THEN
  380: *
  381: *           Update U(:,K+1:M) := U(:,K+1:M)*U1
  382: *
  383:             CALL ZUNM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
  384:      $                   A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
  385:      $                   WORK, INFO )
  386:          END IF
  387: *
  388: *        Clean up
  389: *
  390:          DO 140 J = N - L + 1, N
  391:             DO 130 I = J - N + K + L + 1, M
  392:                A( I, J ) = CZERO
  393:   130       CONTINUE
  394:   140    CONTINUE
  395: *
  396:       END IF
  397: *
  398:       RETURN
  399: *
  400: *     End of ZGGSVP
  401: *
  402:       END

CVSweb interface <joel.bertrand@systella.fr>