File:  [local] / rpl / lapack / lapack / zggsvp.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:32 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
    2:      $                   TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
    3:      $                   IWORK, RWORK, TAU, WORK, INFO )
    4: *
    5: *  -- LAPACK routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBQ, JOBU, JOBV
   12:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
   13:       DOUBLE PRECISION   TOLA, TOLB
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IWORK( * )
   17:       DOUBLE PRECISION   RWORK( * )
   18:       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
   19:      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  ZGGSVP computes unitary matrices U, V and Q such that
   26: *
   27: *                   N-K-L  K    L
   28: *   U'*A*Q =     K ( 0    A12  A13 )  if M-K-L >= 0;
   29: *                L ( 0     0   A23 )
   30: *            M-K-L ( 0     0    0  )
   31: *
   32: *                   N-K-L  K    L
   33: *          =     K ( 0    A12  A13 )  if M-K-L < 0;
   34: *              M-K ( 0     0   A23 )
   35: *
   36: *                 N-K-L  K    L
   37: *   V'*B*Q =   L ( 0     0   B13 )
   38: *            P-L ( 0     0    0  )
   39: *
   40: *  where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
   41: *  upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
   42: *  otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective
   43: *  numerical rank of the (M+P)-by-N matrix (A',B')'.  Z' denotes the
   44: *  conjugate transpose of Z.
   45: *
   46: *  This decomposition is the preprocessing step for computing the
   47: *  Generalized Singular Value Decomposition (GSVD), see subroutine
   48: *  ZGGSVD.
   49: *
   50: *  Arguments
   51: *  =========
   52: *
   53: *  JOBU    (input) CHARACTER*1
   54: *          = 'U':  Unitary matrix U is computed;
   55: *          = 'N':  U is not computed.
   56: *
   57: *  JOBV    (input) CHARACTER*1
   58: *          = 'V':  Unitary matrix V is computed;
   59: *          = 'N':  V is not computed.
   60: *
   61: *  JOBQ    (input) CHARACTER*1
   62: *          = 'Q':  Unitary matrix Q is computed;
   63: *          = 'N':  Q is not computed.
   64: *
   65: *  M       (input) INTEGER
   66: *          The number of rows of the matrix A.  M >= 0.
   67: *
   68: *  P       (input) INTEGER
   69: *          The number of rows of the matrix B.  P >= 0.
   70: *
   71: *  N       (input) INTEGER
   72: *          The number of columns of the matrices A and B.  N >= 0.
   73: *
   74: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
   75: *          On entry, the M-by-N matrix A.
   76: *          On exit, A contains the triangular (or trapezoidal) matrix
   77: *          described in the Purpose section.
   78: *
   79: *  LDA     (input) INTEGER
   80: *          The leading dimension of the array A. LDA >= max(1,M).
   81: *
   82: *  B       (input/output) COMPLEX*16 array, dimension (LDB,N)
   83: *          On entry, the P-by-N matrix B.
   84: *          On exit, B contains the triangular matrix described in
   85: *          the Purpose section.
   86: *
   87: *  LDB     (input) INTEGER
   88: *          The leading dimension of the array B. LDB >= max(1,P).
   89: *
   90: *  TOLA    (input) DOUBLE PRECISION
   91: *  TOLB    (input) DOUBLE PRECISION
   92: *          TOLA and TOLB are the thresholds to determine the effective
   93: *          numerical rank of matrix B and a subblock of A. Generally,
   94: *          they are set to
   95: *             TOLA = MAX(M,N)*norm(A)*MAZHEPS,
   96: *             TOLB = MAX(P,N)*norm(B)*MAZHEPS.
   97: *          The size of TOLA and TOLB may affect the size of backward
   98: *          errors of the decomposition.
   99: *
  100: *  K       (output) INTEGER
  101: *  L       (output) INTEGER
  102: *          On exit, K and L specify the dimension of the subblocks
  103: *          described in Purpose section.
  104: *          K + L = effective numerical rank of (A',B')'.
  105: *
  106: *  U       (output) COMPLEX*16 array, dimension (LDU,M)
  107: *          If JOBU = 'U', U contains the unitary matrix U.
  108: *          If JOBU = 'N', U is not referenced.
  109: *
  110: *  LDU     (input) INTEGER
  111: *          The leading dimension of the array U. LDU >= max(1,M) if
  112: *          JOBU = 'U'; LDU >= 1 otherwise.
  113: *
  114: *  V       (output) COMPLEX*16 array, dimension (LDV,P)
  115: *          If JOBV = 'V', V contains the unitary matrix V.
  116: *          If JOBV = 'N', V is not referenced.
  117: *
  118: *  LDV     (input) INTEGER
  119: *          The leading dimension of the array V. LDV >= max(1,P) if
  120: *          JOBV = 'V'; LDV >= 1 otherwise.
  121: *
  122: *  Q       (output) COMPLEX*16 array, dimension (LDQ,N)
  123: *          If JOBQ = 'Q', Q contains the unitary matrix Q.
  124: *          If JOBQ = 'N', Q is not referenced.
  125: *
  126: *  LDQ     (input) INTEGER
  127: *          The leading dimension of the array Q. LDQ >= max(1,N) if
  128: *          JOBQ = 'Q'; LDQ >= 1 otherwise.
  129: *
  130: *  IWORK   (workspace) INTEGER array, dimension (N)
  131: *
  132: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
  133: *
  134: *  TAU     (workspace) COMPLEX*16 array, dimension (N)
  135: *
  136: *  WORK    (workspace) COMPLEX*16 array, dimension (max(3*N,M,P))
  137: *
  138: *  INFO    (output) INTEGER
  139: *          = 0:  successful exit
  140: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  141: *
  142: *  Further Details
  143: *  ===============
  144: *
  145: *  The subroutine uses LAPACK subroutine ZGEQPF for the QR factorization
  146: *  with column pivoting to detect the effective numerical rank of the
  147: *  a matrix. It may be replaced by a better rank determination strategy.
  148: *
  149: *  =====================================================================
  150: *
  151: *     .. Parameters ..
  152:       COMPLEX*16         CZERO, CONE
  153:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  154:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  155: *     ..
  156: *     .. Local Scalars ..
  157:       LOGICAL            FORWRD, WANTQ, WANTU, WANTV
  158:       INTEGER            I, J
  159:       COMPLEX*16         T
  160: *     ..
  161: *     .. External Functions ..
  162:       LOGICAL            LSAME
  163:       EXTERNAL           LSAME
  164: *     ..
  165: *     .. External Subroutines ..
  166:       EXTERNAL           XERBLA, ZGEQPF, ZGEQR2, ZGERQ2, ZLACPY, ZLAPMT,
  167:      $                   ZLASET, ZUNG2R, ZUNM2R, ZUNMR2
  168: *     ..
  169: *     .. Intrinsic Functions ..
  170:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
  171: *     ..
  172: *     .. Statement Functions ..
  173:       DOUBLE PRECISION   CABS1
  174: *     ..
  175: *     .. Statement Function definitions ..
  176:       CABS1( T ) = ABS( DBLE( T ) ) + ABS( DIMAG( T ) )
  177: *     ..
  178: *     .. Executable Statements ..
  179: *
  180: *     Test the input parameters
  181: *
  182:       WANTU = LSAME( JOBU, 'U' )
  183:       WANTV = LSAME( JOBV, 'V' )
  184:       WANTQ = LSAME( JOBQ, 'Q' )
  185:       FORWRD = .TRUE.
  186: *
  187:       INFO = 0
  188:       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
  189:          INFO = -1
  190:       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  191:          INFO = -2
  192:       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
  193:          INFO = -3
  194:       ELSE IF( M.LT.0 ) THEN
  195:          INFO = -4
  196:       ELSE IF( P.LT.0 ) THEN
  197:          INFO = -5
  198:       ELSE IF( N.LT.0 ) THEN
  199:          INFO = -6
  200:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  201:          INFO = -8
  202:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  203:          INFO = -10
  204:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
  205:          INFO = -16
  206:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
  207:          INFO = -18
  208:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  209:          INFO = -20
  210:       END IF
  211:       IF( INFO.NE.0 ) THEN
  212:          CALL XERBLA( 'ZGGSVP', -INFO )
  213:          RETURN
  214:       END IF
  215: *
  216: *     QR with column pivoting of B: B*P = V*( S11 S12 )
  217: *                                           (  0   0  )
  218: *
  219:       DO 10 I = 1, N
  220:          IWORK( I ) = 0
  221:    10 CONTINUE
  222:       CALL ZGEQPF( P, N, B, LDB, IWORK, TAU, WORK, RWORK, INFO )
  223: *
  224: *     Update A := A*P
  225: *
  226:       CALL ZLAPMT( FORWRD, M, N, A, LDA, IWORK )
  227: *
  228: *     Determine the effective rank of matrix B.
  229: *
  230:       L = 0
  231:       DO 20 I = 1, MIN( P, N )
  232:          IF( CABS1( B( I, I ) ).GT.TOLB )
  233:      $      L = L + 1
  234:    20 CONTINUE
  235: *
  236:       IF( WANTV ) THEN
  237: *
  238: *        Copy the details of V, and form V.
  239: *
  240:          CALL ZLASET( 'Full', P, P, CZERO, CZERO, V, LDV )
  241:          IF( P.GT.1 )
  242:      $      CALL ZLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
  243:      $                   LDV )
  244:          CALL ZUNG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
  245:       END IF
  246: *
  247: *     Clean up B
  248: *
  249:       DO 40 J = 1, L - 1
  250:          DO 30 I = J + 1, L
  251:             B( I, J ) = CZERO
  252:    30    CONTINUE
  253:    40 CONTINUE
  254:       IF( P.GT.L )
  255:      $   CALL ZLASET( 'Full', P-L, N, CZERO, CZERO, B( L+1, 1 ), LDB )
  256: *
  257:       IF( WANTQ ) THEN
  258: *
  259: *        Set Q = I and Update Q := Q*P
  260: *
  261:          CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
  262:          CALL ZLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
  263:       END IF
  264: *
  265:       IF( P.GE.L .AND. N.NE.L ) THEN
  266: *
  267: *        RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z
  268: *
  269:          CALL ZGERQ2( L, N, B, LDB, TAU, WORK, INFO )
  270: *
  271: *        Update A := A*Z'
  272: *
  273:          CALL ZUNMR2( 'Right', 'Conjugate transpose', M, N, L, B, LDB,
  274:      $                TAU, A, LDA, WORK, INFO )
  275:          IF( WANTQ ) THEN
  276: *
  277: *           Update Q := Q*Z'
  278: *
  279:             CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N, L, B,
  280:      $                   LDB, TAU, Q, LDQ, WORK, INFO )
  281:          END IF
  282: *
  283: *        Clean up B
  284: *
  285:          CALL ZLASET( 'Full', L, N-L, CZERO, CZERO, B, LDB )
  286:          DO 60 J = N - L + 1, N
  287:             DO 50 I = J - N + L + 1, L
  288:                B( I, J ) = CZERO
  289:    50       CONTINUE
  290:    60    CONTINUE
  291: *
  292:       END IF
  293: *
  294: *     Let              N-L     L
  295: *                A = ( A11    A12 ) M,
  296: *
  297: *     then the following does the complete QR decomposition of A11:
  298: *
  299: *              A11 = U*(  0  T12 )*P1'
  300: *                      (  0   0  )
  301: *
  302:       DO 70 I = 1, N - L
  303:          IWORK( I ) = 0
  304:    70 CONTINUE
  305:       CALL ZGEQPF( M, N-L, A, LDA, IWORK, TAU, WORK, RWORK, INFO )
  306: *
  307: *     Determine the effective rank of A11
  308: *
  309:       K = 0
  310:       DO 80 I = 1, MIN( M, N-L )
  311:          IF( CABS1( A( I, I ) ).GT.TOLA )
  312:      $      K = K + 1
  313:    80 CONTINUE
  314: *
  315: *     Update A12 := U'*A12, where A12 = A( 1:M, N-L+1:N )
  316: *
  317:       CALL ZUNM2R( 'Left', 'Conjugate transpose', M, L, MIN( M, N-L ),
  318:      $             A, LDA, TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
  319: *
  320:       IF( WANTU ) THEN
  321: *
  322: *        Copy the details of U, and form U
  323: *
  324:          CALL ZLASET( 'Full', M, M, CZERO, CZERO, U, LDU )
  325:          IF( M.GT.1 )
  326:      $      CALL ZLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
  327:      $                   LDU )
  328:          CALL ZUNG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
  329:       END IF
  330: *
  331:       IF( WANTQ ) THEN
  332: *
  333: *        Update Q( 1:N, 1:N-L )  = Q( 1:N, 1:N-L )*P1
  334: *
  335:          CALL ZLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
  336:       END IF
  337: *
  338: *     Clean up A: set the strictly lower triangular part of
  339: *     A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
  340: *
  341:       DO 100 J = 1, K - 1
  342:          DO 90 I = J + 1, K
  343:             A( I, J ) = CZERO
  344:    90    CONTINUE
  345:   100 CONTINUE
  346:       IF( M.GT.K )
  347:      $   CALL ZLASET( 'Full', M-K, N-L, CZERO, CZERO, A( K+1, 1 ), LDA )
  348: *
  349:       IF( N-L.GT.K ) THEN
  350: *
  351: *        RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
  352: *
  353:          CALL ZGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
  354: *
  355:          IF( WANTQ ) THEN
  356: *
  357: *           Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1'
  358: *
  359:             CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N-L, K, A,
  360:      $                   LDA, TAU, Q, LDQ, WORK, INFO )
  361:          END IF
  362: *
  363: *        Clean up A
  364: *
  365:          CALL ZLASET( 'Full', K, N-L-K, CZERO, CZERO, A, LDA )
  366:          DO 120 J = N - L - K + 1, N - L
  367:             DO 110 I = J - N + L + K + 1, K
  368:                A( I, J ) = CZERO
  369:   110       CONTINUE
  370:   120    CONTINUE
  371: *
  372:       END IF
  373: *
  374:       IF( M.GT.K ) THEN
  375: *
  376: *        QR factorization of A( K+1:M,N-L+1:N )
  377: *
  378:          CALL ZGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
  379: *
  380:          IF( WANTU ) THEN
  381: *
  382: *           Update U(:,K+1:M) := U(:,K+1:M)*U1
  383: *
  384:             CALL ZUNM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
  385:      $                   A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
  386:      $                   WORK, INFO )
  387:          END IF
  388: *
  389: *        Clean up
  390: *
  391:          DO 140 J = N - L + 1, N
  392:             DO 130 I = J - N + K + L + 1, M
  393:                A( I, J ) = CZERO
  394:   130       CONTINUE
  395:   140    CONTINUE
  396: *
  397:       END IF
  398: *
  399:       RETURN
  400: *
  401: *     End of ZGGSVP
  402: *
  403:       END

CVSweb interface <joel.bertrand@systella.fr>