File:  [local] / rpl / lapack / lapack / zggsvp.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:21 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZGGSVP
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGGSVP + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvp.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvp.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvp.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
   22: *                          TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
   23: *                          IWORK, RWORK, TAU, WORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBQ, JOBU, JOBV
   27: *       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
   28: *       DOUBLE PRECISION   TOLA, TOLB
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IWORK( * )
   32: *       DOUBLE PRECISION   RWORK( * )
   33: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
   34: *      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
   35: *       ..
   36: *
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> This routine is deprecated and has been replaced by routine ZGGSVP3.
   44: *>
   45: *> ZGGSVP computes unitary matrices U, V and Q such that
   46: *>
   47: *>                    N-K-L  K    L
   48: *>  U**H*A*Q =     K ( 0    A12  A13 )  if M-K-L >= 0;
   49: *>                 L ( 0     0   A23 )
   50: *>             M-K-L ( 0     0    0  )
   51: *>
   52: *>                  N-K-L  K    L
   53: *>         =     K ( 0    A12  A13 )  if M-K-L < 0;
   54: *>             M-K ( 0     0   A23 )
   55: *>
   56: *>                  N-K-L  K    L
   57: *>  V**H*B*Q =   L ( 0     0   B13 )
   58: *>             P-L ( 0     0    0  )
   59: *>
   60: *> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
   61: *> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
   62: *> otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective
   63: *> numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H.
   64: *>
   65: *> This decomposition is the preprocessing step for computing the
   66: *> Generalized Singular Value Decomposition (GSVD), see subroutine
   67: *> ZGGSVD.
   68: *> \endverbatim
   69: *
   70: *  Arguments:
   71: *  ==========
   72: *
   73: *> \param[in] JOBU
   74: *> \verbatim
   75: *>          JOBU is CHARACTER*1
   76: *>          = 'U':  Unitary matrix U is computed;
   77: *>          = 'N':  U is not computed.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] JOBV
   81: *> \verbatim
   82: *>          JOBV is CHARACTER*1
   83: *>          = 'V':  Unitary matrix V is computed;
   84: *>          = 'N':  V is not computed.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] JOBQ
   88: *> \verbatim
   89: *>          JOBQ is CHARACTER*1
   90: *>          = 'Q':  Unitary matrix Q is computed;
   91: *>          = 'N':  Q is not computed.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] M
   95: *> \verbatim
   96: *>          M is INTEGER
   97: *>          The number of rows of the matrix A.  M >= 0.
   98: *> \endverbatim
   99: *>
  100: *> \param[in] P
  101: *> \verbatim
  102: *>          P is INTEGER
  103: *>          The number of rows of the matrix B.  P >= 0.
  104: *> \endverbatim
  105: *>
  106: *> \param[in] N
  107: *> \verbatim
  108: *>          N is INTEGER
  109: *>          The number of columns of the matrices A and B.  N >= 0.
  110: *> \endverbatim
  111: *>
  112: *> \param[in,out] A
  113: *> \verbatim
  114: *>          A is COMPLEX*16 array, dimension (LDA,N)
  115: *>          On entry, the M-by-N matrix A.
  116: *>          On exit, A contains the triangular (or trapezoidal) matrix
  117: *>          described in the Purpose section.
  118: *> \endverbatim
  119: *>
  120: *> \param[in] LDA
  121: *> \verbatim
  122: *>          LDA is INTEGER
  123: *>          The leading dimension of the array A. LDA >= max(1,M).
  124: *> \endverbatim
  125: *>
  126: *> \param[in,out] B
  127: *> \verbatim
  128: *>          B is COMPLEX*16 array, dimension (LDB,N)
  129: *>          On entry, the P-by-N matrix B.
  130: *>          On exit, B contains the triangular matrix described in
  131: *>          the Purpose section.
  132: *> \endverbatim
  133: *>
  134: *> \param[in] LDB
  135: *> \verbatim
  136: *>          LDB is INTEGER
  137: *>          The leading dimension of the array B. LDB >= max(1,P).
  138: *> \endverbatim
  139: *>
  140: *> \param[in] TOLA
  141: *> \verbatim
  142: *>          TOLA is DOUBLE PRECISION
  143: *> \endverbatim
  144: *>
  145: *> \param[in] TOLB
  146: *> \verbatim
  147: *>          TOLB is DOUBLE PRECISION
  148: *>
  149: *>          TOLA and TOLB are the thresholds to determine the effective
  150: *>          numerical rank of matrix B and a subblock of A. Generally,
  151: *>          they are set to
  152: *>             TOLA = MAX(M,N)*norm(A)*MAZHEPS,
  153: *>             TOLB = MAX(P,N)*norm(B)*MAZHEPS.
  154: *>          The size of TOLA and TOLB may affect the size of backward
  155: *>          errors of the decomposition.
  156: *> \endverbatim
  157: *>
  158: *> \param[out] K
  159: *> \verbatim
  160: *>          K is INTEGER
  161: *> \endverbatim
  162: *>
  163: *> \param[out] L
  164: *> \verbatim
  165: *>          L is INTEGER
  166: *>
  167: *>          On exit, K and L specify the dimension of the subblocks
  168: *>          described in Purpose section.
  169: *>          K + L = effective numerical rank of (A**H,B**H)**H.
  170: *> \endverbatim
  171: *>
  172: *> \param[out] U
  173: *> \verbatim
  174: *>          U is COMPLEX*16 array, dimension (LDU,M)
  175: *>          If JOBU = 'U', U contains the unitary matrix U.
  176: *>          If JOBU = 'N', U is not referenced.
  177: *> \endverbatim
  178: *>
  179: *> \param[in] LDU
  180: *> \verbatim
  181: *>          LDU is INTEGER
  182: *>          The leading dimension of the array U. LDU >= max(1,M) if
  183: *>          JOBU = 'U'; LDU >= 1 otherwise.
  184: *> \endverbatim
  185: *>
  186: *> \param[out] V
  187: *> \verbatim
  188: *>          V is COMPLEX*16 array, dimension (LDV,P)
  189: *>          If JOBV = 'V', V contains the unitary matrix V.
  190: *>          If JOBV = 'N', V is not referenced.
  191: *> \endverbatim
  192: *>
  193: *> \param[in] LDV
  194: *> \verbatim
  195: *>          LDV is INTEGER
  196: *>          The leading dimension of the array V. LDV >= max(1,P) if
  197: *>          JOBV = 'V'; LDV >= 1 otherwise.
  198: *> \endverbatim
  199: *>
  200: *> \param[out] Q
  201: *> \verbatim
  202: *>          Q is COMPLEX*16 array, dimension (LDQ,N)
  203: *>          If JOBQ = 'Q', Q contains the unitary matrix Q.
  204: *>          If JOBQ = 'N', Q is not referenced.
  205: *> \endverbatim
  206: *>
  207: *> \param[in] LDQ
  208: *> \verbatim
  209: *>          LDQ is INTEGER
  210: *>          The leading dimension of the array Q. LDQ >= max(1,N) if
  211: *>          JOBQ = 'Q'; LDQ >= 1 otherwise.
  212: *> \endverbatim
  213: *>
  214: *> \param[out] IWORK
  215: *> \verbatim
  216: *>          IWORK is INTEGER array, dimension (N)
  217: *> \endverbatim
  218: *>
  219: *> \param[out] RWORK
  220: *> \verbatim
  221: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
  222: *> \endverbatim
  223: *>
  224: *> \param[out] TAU
  225: *> \verbatim
  226: *>          TAU is COMPLEX*16 array, dimension (N)
  227: *> \endverbatim
  228: *>
  229: *> \param[out] WORK
  230: *> \verbatim
  231: *>          WORK is COMPLEX*16 array, dimension (max(3*N,M,P))
  232: *> \endverbatim
  233: *>
  234: *> \param[out] INFO
  235: *> \verbatim
  236: *>          INFO is INTEGER
  237: *>          = 0:  successful exit
  238: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  239: *> \endverbatim
  240: *
  241: *  Authors:
  242: *  ========
  243: *
  244: *> \author Univ. of Tennessee
  245: *> \author Univ. of California Berkeley
  246: *> \author Univ. of Colorado Denver
  247: *> \author NAG Ltd.
  248: *
  249: *> \ingroup complex16OTHERcomputational
  250: *
  251: *> \par Further Details:
  252: *  =====================
  253: *>
  254: *> \verbatim
  255: *>
  256: *>  The subroutine uses LAPACK subroutine ZGEQPF for the QR factorization
  257: *>  with column pivoting to detect the effective numerical rank of the
  258: *>  a matrix. It may be replaced by a better rank determination strategy.
  259: *> \endverbatim
  260: *>
  261: *  =====================================================================
  262:       SUBROUTINE ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
  263:      $                   TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
  264:      $                   IWORK, RWORK, TAU, WORK, INFO )
  265: *
  266: *  -- LAPACK computational routine --
  267: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  268: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  269: *
  270: *     .. Scalar Arguments ..
  271:       CHARACTER          JOBQ, JOBU, JOBV
  272:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
  273:       DOUBLE PRECISION   TOLA, TOLB
  274: *     ..
  275: *     .. Array Arguments ..
  276:       INTEGER            IWORK( * )
  277:       DOUBLE PRECISION   RWORK( * )
  278:       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  279:      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
  280: *     ..
  281: *
  282: *  =====================================================================
  283: *
  284: *     .. Parameters ..
  285:       COMPLEX*16         CZERO, CONE
  286:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  287:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  288: *     ..
  289: *     .. Local Scalars ..
  290:       LOGICAL            FORWRD, WANTQ, WANTU, WANTV
  291:       INTEGER            I, J
  292:       COMPLEX*16         T
  293: *     ..
  294: *     .. External Functions ..
  295:       LOGICAL            LSAME
  296:       EXTERNAL           LSAME
  297: *     ..
  298: *     .. External Subroutines ..
  299:       EXTERNAL           XERBLA, ZGEQPF, ZGEQR2, ZGERQ2, ZLACPY, ZLAPMT,
  300:      $                   ZLASET, ZUNG2R, ZUNM2R, ZUNMR2
  301: *     ..
  302: *     .. Intrinsic Functions ..
  303:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
  304: *     ..
  305: *     .. Statement Functions ..
  306:       DOUBLE PRECISION   CABS1
  307: *     ..
  308: *     .. Statement Function definitions ..
  309:       CABS1( T ) = ABS( DBLE( T ) ) + ABS( DIMAG( T ) )
  310: *     ..
  311: *     .. Executable Statements ..
  312: *
  313: *     Test the input parameters
  314: *
  315:       WANTU = LSAME( JOBU, 'U' )
  316:       WANTV = LSAME( JOBV, 'V' )
  317:       WANTQ = LSAME( JOBQ, 'Q' )
  318:       FORWRD = .TRUE.
  319: *
  320:       INFO = 0
  321:       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
  322:          INFO = -1
  323:       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  324:          INFO = -2
  325:       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
  326:          INFO = -3
  327:       ELSE IF( M.LT.0 ) THEN
  328:          INFO = -4
  329:       ELSE IF( P.LT.0 ) THEN
  330:          INFO = -5
  331:       ELSE IF( N.LT.0 ) THEN
  332:          INFO = -6
  333:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  334:          INFO = -8
  335:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  336:          INFO = -10
  337:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
  338:          INFO = -16
  339:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
  340:          INFO = -18
  341:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  342:          INFO = -20
  343:       END IF
  344:       IF( INFO.NE.0 ) THEN
  345:          CALL XERBLA( 'ZGGSVP', -INFO )
  346:          RETURN
  347:       END IF
  348: *
  349: *     QR with column pivoting of B: B*P = V*( S11 S12 )
  350: *                                           (  0   0  )
  351: *
  352:       DO 10 I = 1, N
  353:          IWORK( I ) = 0
  354:    10 CONTINUE
  355:       CALL ZGEQPF( P, N, B, LDB, IWORK, TAU, WORK, RWORK, INFO )
  356: *
  357: *     Update A := A*P
  358: *
  359:       CALL ZLAPMT( FORWRD, M, N, A, LDA, IWORK )
  360: *
  361: *     Determine the effective rank of matrix B.
  362: *
  363:       L = 0
  364:       DO 20 I = 1, MIN( P, N )
  365:          IF( CABS1( B( I, I ) ).GT.TOLB )
  366:      $      L = L + 1
  367:    20 CONTINUE
  368: *
  369:       IF( WANTV ) THEN
  370: *
  371: *        Copy the details of V, and form V.
  372: *
  373:          CALL ZLASET( 'Full', P, P, CZERO, CZERO, V, LDV )
  374:          IF( P.GT.1 )
  375:      $      CALL ZLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
  376:      $                   LDV )
  377:          CALL ZUNG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
  378:       END IF
  379: *
  380: *     Clean up B
  381: *
  382:       DO 40 J = 1, L - 1
  383:          DO 30 I = J + 1, L
  384:             B( I, J ) = CZERO
  385:    30    CONTINUE
  386:    40 CONTINUE
  387:       IF( P.GT.L )
  388:      $   CALL ZLASET( 'Full', P-L, N, CZERO, CZERO, B( L+1, 1 ), LDB )
  389: *
  390:       IF( WANTQ ) THEN
  391: *
  392: *        Set Q = I and Update Q := Q*P
  393: *
  394:          CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
  395:          CALL ZLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
  396:       END IF
  397: *
  398:       IF( P.GE.L .AND. N.NE.L ) THEN
  399: *
  400: *        RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z
  401: *
  402:          CALL ZGERQ2( L, N, B, LDB, TAU, WORK, INFO )
  403: *
  404: *        Update A := A*Z**H
  405: *
  406:          CALL ZUNMR2( 'Right', 'Conjugate transpose', M, N, L, B, LDB,
  407:      $                TAU, A, LDA, WORK, INFO )
  408:          IF( WANTQ ) THEN
  409: *
  410: *           Update Q := Q*Z**H
  411: *
  412:             CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N, L, B,
  413:      $                   LDB, TAU, Q, LDQ, WORK, INFO )
  414:          END IF
  415: *
  416: *        Clean up B
  417: *
  418:          CALL ZLASET( 'Full', L, N-L, CZERO, CZERO, B, LDB )
  419:          DO 60 J = N - L + 1, N
  420:             DO 50 I = J - N + L + 1, L
  421:                B( I, J ) = CZERO
  422:    50       CONTINUE
  423:    60    CONTINUE
  424: *
  425:       END IF
  426: *
  427: *     Let              N-L     L
  428: *                A = ( A11    A12 ) M,
  429: *
  430: *     then the following does the complete QR decomposition of A11:
  431: *
  432: *              A11 = U*(  0  T12 )*P1**H
  433: *                      (  0   0  )
  434: *
  435:       DO 70 I = 1, N - L
  436:          IWORK( I ) = 0
  437:    70 CONTINUE
  438:       CALL ZGEQPF( M, N-L, A, LDA, IWORK, TAU, WORK, RWORK, INFO )
  439: *
  440: *     Determine the effective rank of A11
  441: *
  442:       K = 0
  443:       DO 80 I = 1, MIN( M, N-L )
  444:          IF( CABS1( A( I, I ) ).GT.TOLA )
  445:      $      K = K + 1
  446:    80 CONTINUE
  447: *
  448: *     Update A12 := U**H*A12, where A12 = A( 1:M, N-L+1:N )
  449: *
  450:       CALL ZUNM2R( 'Left', 'Conjugate transpose', M, L, MIN( M, N-L ),
  451:      $             A, LDA, TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
  452: *
  453:       IF( WANTU ) THEN
  454: *
  455: *        Copy the details of U, and form U
  456: *
  457:          CALL ZLASET( 'Full', M, M, CZERO, CZERO, U, LDU )
  458:          IF( M.GT.1 )
  459:      $      CALL ZLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
  460:      $                   LDU )
  461:          CALL ZUNG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
  462:       END IF
  463: *
  464:       IF( WANTQ ) THEN
  465: *
  466: *        Update Q( 1:N, 1:N-L )  = Q( 1:N, 1:N-L )*P1
  467: *
  468:          CALL ZLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
  469:       END IF
  470: *
  471: *     Clean up A: set the strictly lower triangular part of
  472: *     A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
  473: *
  474:       DO 100 J = 1, K - 1
  475:          DO 90 I = J + 1, K
  476:             A( I, J ) = CZERO
  477:    90    CONTINUE
  478:   100 CONTINUE
  479:       IF( M.GT.K )
  480:      $   CALL ZLASET( 'Full', M-K, N-L, CZERO, CZERO, A( K+1, 1 ), LDA )
  481: *
  482:       IF( N-L.GT.K ) THEN
  483: *
  484: *        RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
  485: *
  486:          CALL ZGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
  487: *
  488:          IF( WANTQ ) THEN
  489: *
  490: *           Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**H
  491: *
  492:             CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N-L, K, A,
  493:      $                   LDA, TAU, Q, LDQ, WORK, INFO )
  494:          END IF
  495: *
  496: *        Clean up A
  497: *
  498:          CALL ZLASET( 'Full', K, N-L-K, CZERO, CZERO, A, LDA )
  499:          DO 120 J = N - L - K + 1, N - L
  500:             DO 110 I = J - N + L + K + 1, K
  501:                A( I, J ) = CZERO
  502:   110       CONTINUE
  503:   120    CONTINUE
  504: *
  505:       END IF
  506: *
  507:       IF( M.GT.K ) THEN
  508: *
  509: *        QR factorization of A( K+1:M,N-L+1:N )
  510: *
  511:          CALL ZGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
  512: *
  513:          IF( WANTU ) THEN
  514: *
  515: *           Update U(:,K+1:M) := U(:,K+1:M)*U1
  516: *
  517:             CALL ZUNM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
  518:      $                   A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
  519:      $                   WORK, INFO )
  520:          END IF
  521: *
  522: *        Clean up
  523: *
  524:          DO 140 J = N - L + 1, N
  525:             DO 130 I = J - N + K + L + 1, M
  526:                A( I, J ) = CZERO
  527:   130       CONTINUE
  528:   140    CONTINUE
  529: *
  530:       END IF
  531: *
  532:       RETURN
  533: *
  534: *     End of ZGGSVP
  535: *
  536:       END

CVSweb interface <joel.bertrand@systella.fr>