File:  [local] / rpl / lapack / lapack / zggsvp.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:54:13 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b ZGGSVP
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGGSVP + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvp.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvp.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvp.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
   22: *                          TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
   23: *                          IWORK, RWORK, TAU, WORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBQ, JOBU, JOBV
   27: *       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
   28: *       DOUBLE PRECISION   TOLA, TOLB
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IWORK( * )
   32: *       DOUBLE PRECISION   RWORK( * )
   33: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
   34: *      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
   35: *       ..
   36: *
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> This routine is deprecated and has been replaced by routine ZGGSVP3.
   44: *>
   45: *> ZGGSVP computes unitary matrices U, V and Q such that
   46: *>
   47: *>                    N-K-L  K    L
   48: *>  U**H*A*Q =     K ( 0    A12  A13 )  if M-K-L >= 0;
   49: *>                 L ( 0     0   A23 )
   50: *>             M-K-L ( 0     0    0  )
   51: *>
   52: *>                  N-K-L  K    L
   53: *>         =     K ( 0    A12  A13 )  if M-K-L < 0;
   54: *>             M-K ( 0     0   A23 )
   55: *>
   56: *>                  N-K-L  K    L
   57: *>  V**H*B*Q =   L ( 0     0   B13 )
   58: *>             P-L ( 0     0    0  )
   59: *>
   60: *> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
   61: *> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
   62: *> otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective
   63: *> numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H.
   64: *>
   65: *> This decomposition is the preprocessing step for computing the
   66: *> Generalized Singular Value Decomposition (GSVD), see subroutine
   67: *> ZGGSVD.
   68: *> \endverbatim
   69: *
   70: *  Arguments:
   71: *  ==========
   72: *
   73: *> \param[in] JOBU
   74: *> \verbatim
   75: *>          JOBU is CHARACTER*1
   76: *>          = 'U':  Unitary matrix U is computed;
   77: *>          = 'N':  U is not computed.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] JOBV
   81: *> \verbatim
   82: *>          JOBV is CHARACTER*1
   83: *>          = 'V':  Unitary matrix V is computed;
   84: *>          = 'N':  V is not computed.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] JOBQ
   88: *> \verbatim
   89: *>          JOBQ is CHARACTER*1
   90: *>          = 'Q':  Unitary matrix Q is computed;
   91: *>          = 'N':  Q is not computed.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] M
   95: *> \verbatim
   96: *>          M is INTEGER
   97: *>          The number of rows of the matrix A.  M >= 0.
   98: *> \endverbatim
   99: *>
  100: *> \param[in] P
  101: *> \verbatim
  102: *>          P is INTEGER
  103: *>          The number of rows of the matrix B.  P >= 0.
  104: *> \endverbatim
  105: *>
  106: *> \param[in] N
  107: *> \verbatim
  108: *>          N is INTEGER
  109: *>          The number of columns of the matrices A and B.  N >= 0.
  110: *> \endverbatim
  111: *>
  112: *> \param[in,out] A
  113: *> \verbatim
  114: *>          A is COMPLEX*16 array, dimension (LDA,N)
  115: *>          On entry, the M-by-N matrix A.
  116: *>          On exit, A contains the triangular (or trapezoidal) matrix
  117: *>          described in the Purpose section.
  118: *> \endverbatim
  119: *>
  120: *> \param[in] LDA
  121: *> \verbatim
  122: *>          LDA is INTEGER
  123: *>          The leading dimension of the array A. LDA >= max(1,M).
  124: *> \endverbatim
  125: *>
  126: *> \param[in,out] B
  127: *> \verbatim
  128: *>          B is COMPLEX*16 array, dimension (LDB,N)
  129: *>          On entry, the P-by-N matrix B.
  130: *>          On exit, B contains the triangular matrix described in
  131: *>          the Purpose section.
  132: *> \endverbatim
  133: *>
  134: *> \param[in] LDB
  135: *> \verbatim
  136: *>          LDB is INTEGER
  137: *>          The leading dimension of the array B. LDB >= max(1,P).
  138: *> \endverbatim
  139: *>
  140: *> \param[in] TOLA
  141: *> \verbatim
  142: *>          TOLA is DOUBLE PRECISION
  143: *> \endverbatim
  144: *>
  145: *> \param[in] TOLB
  146: *> \verbatim
  147: *>          TOLB is DOUBLE PRECISION
  148: *>
  149: *>          TOLA and TOLB are the thresholds to determine the effective
  150: *>          numerical rank of matrix B and a subblock of A. Generally,
  151: *>          they are set to
  152: *>             TOLA = MAX(M,N)*norm(A)*MAZHEPS,
  153: *>             TOLB = MAX(P,N)*norm(B)*MAZHEPS.
  154: *>          The size of TOLA and TOLB may affect the size of backward
  155: *>          errors of the decomposition.
  156: *> \endverbatim
  157: *>
  158: *> \param[out] K
  159: *> \verbatim
  160: *>          K is INTEGER
  161: *> \endverbatim
  162: *>
  163: *> \param[out] L
  164: *> \verbatim
  165: *>          L is INTEGER
  166: *>
  167: *>          On exit, K and L specify the dimension of the subblocks
  168: *>          described in Purpose section.
  169: *>          K + L = effective numerical rank of (A**H,B**H)**H.
  170: *> \endverbatim
  171: *>
  172: *> \param[out] U
  173: *> \verbatim
  174: *>          U is COMPLEX*16 array, dimension (LDU,M)
  175: *>          If JOBU = 'U', U contains the unitary matrix U.
  176: *>          If JOBU = 'N', U is not referenced.
  177: *> \endverbatim
  178: *>
  179: *> \param[in] LDU
  180: *> \verbatim
  181: *>          LDU is INTEGER
  182: *>          The leading dimension of the array U. LDU >= max(1,M) if
  183: *>          JOBU = 'U'; LDU >= 1 otherwise.
  184: *> \endverbatim
  185: *>
  186: *> \param[out] V
  187: *> \verbatim
  188: *>          V is COMPLEX*16 array, dimension (LDV,P)
  189: *>          If JOBV = 'V', V contains the unitary matrix V.
  190: *>          If JOBV = 'N', V is not referenced.
  191: *> \endverbatim
  192: *>
  193: *> \param[in] LDV
  194: *> \verbatim
  195: *>          LDV is INTEGER
  196: *>          The leading dimension of the array V. LDV >= max(1,P) if
  197: *>          JOBV = 'V'; LDV >= 1 otherwise.
  198: *> \endverbatim
  199: *>
  200: *> \param[out] Q
  201: *> \verbatim
  202: *>          Q is COMPLEX*16 array, dimension (LDQ,N)
  203: *>          If JOBQ = 'Q', Q contains the unitary matrix Q.
  204: *>          If JOBQ = 'N', Q is not referenced.
  205: *> \endverbatim
  206: *>
  207: *> \param[in] LDQ
  208: *> \verbatim
  209: *>          LDQ is INTEGER
  210: *>          The leading dimension of the array Q. LDQ >= max(1,N) if
  211: *>          JOBQ = 'Q'; LDQ >= 1 otherwise.
  212: *> \endverbatim
  213: *>
  214: *> \param[out] IWORK
  215: *> \verbatim
  216: *>          IWORK is INTEGER array, dimension (N)
  217: *> \endverbatim
  218: *>
  219: *> \param[out] RWORK
  220: *> \verbatim
  221: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
  222: *> \endverbatim
  223: *>
  224: *> \param[out] TAU
  225: *> \verbatim
  226: *>          TAU is COMPLEX*16 array, dimension (N)
  227: *> \endverbatim
  228: *>
  229: *> \param[out] WORK
  230: *> \verbatim
  231: *>          WORK is COMPLEX*16 array, dimension (max(3*N,M,P))
  232: *> \endverbatim
  233: *>
  234: *> \param[out] INFO
  235: *> \verbatim
  236: *>          INFO is INTEGER
  237: *>          = 0:  successful exit
  238: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  239: *> \endverbatim
  240: *
  241: *  Authors:
  242: *  ========
  243: *
  244: *> \author Univ. of Tennessee
  245: *> \author Univ. of California Berkeley
  246: *> \author Univ. of Colorado Denver
  247: *> \author NAG Ltd.
  248: *
  249: *> \date December 2016
  250: *
  251: *> \ingroup complex16OTHERcomputational
  252: *
  253: *> \par Further Details:
  254: *  =====================
  255: *>
  256: *> \verbatim
  257: *>
  258: *>  The subroutine uses LAPACK subroutine ZGEQPF for the QR factorization
  259: *>  with column pivoting to detect the effective numerical rank of the
  260: *>  a matrix. It may be replaced by a better rank determination strategy.
  261: *> \endverbatim
  262: *>
  263: *  =====================================================================
  264:       SUBROUTINE ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
  265:      $                   TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
  266:      $                   IWORK, RWORK, TAU, WORK, INFO )
  267: *
  268: *  -- LAPACK computational routine (version 3.7.0) --
  269: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  270: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  271: *     December 2016
  272: *
  273: *     .. Scalar Arguments ..
  274:       CHARACTER          JOBQ, JOBU, JOBV
  275:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
  276:       DOUBLE PRECISION   TOLA, TOLB
  277: *     ..
  278: *     .. Array Arguments ..
  279:       INTEGER            IWORK( * )
  280:       DOUBLE PRECISION   RWORK( * )
  281:       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  282:      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
  283: *     ..
  284: *
  285: *  =====================================================================
  286: *
  287: *     .. Parameters ..
  288:       COMPLEX*16         CZERO, CONE
  289:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  290:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  291: *     ..
  292: *     .. Local Scalars ..
  293:       LOGICAL            FORWRD, WANTQ, WANTU, WANTV
  294:       INTEGER            I, J
  295:       COMPLEX*16         T
  296: *     ..
  297: *     .. External Functions ..
  298:       LOGICAL            LSAME
  299:       EXTERNAL           LSAME
  300: *     ..
  301: *     .. External Subroutines ..
  302:       EXTERNAL           XERBLA, ZGEQPF, ZGEQR2, ZGERQ2, ZLACPY, ZLAPMT,
  303:      $                   ZLASET, ZUNG2R, ZUNM2R, ZUNMR2
  304: *     ..
  305: *     .. Intrinsic Functions ..
  306:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
  307: *     ..
  308: *     .. Statement Functions ..
  309:       DOUBLE PRECISION   CABS1
  310: *     ..
  311: *     .. Statement Function definitions ..
  312:       CABS1( T ) = ABS( DBLE( T ) ) + ABS( DIMAG( T ) )
  313: *     ..
  314: *     .. Executable Statements ..
  315: *
  316: *     Test the input parameters
  317: *
  318:       WANTU = LSAME( JOBU, 'U' )
  319:       WANTV = LSAME( JOBV, 'V' )
  320:       WANTQ = LSAME( JOBQ, 'Q' )
  321:       FORWRD = .TRUE.
  322: *
  323:       INFO = 0
  324:       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
  325:          INFO = -1
  326:       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  327:          INFO = -2
  328:       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
  329:          INFO = -3
  330:       ELSE IF( M.LT.0 ) THEN
  331:          INFO = -4
  332:       ELSE IF( P.LT.0 ) THEN
  333:          INFO = -5
  334:       ELSE IF( N.LT.0 ) THEN
  335:          INFO = -6
  336:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  337:          INFO = -8
  338:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  339:          INFO = -10
  340:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
  341:          INFO = -16
  342:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
  343:          INFO = -18
  344:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  345:          INFO = -20
  346:       END IF
  347:       IF( INFO.NE.0 ) THEN
  348:          CALL XERBLA( 'ZGGSVP', -INFO )
  349:          RETURN
  350:       END IF
  351: *
  352: *     QR with column pivoting of B: B*P = V*( S11 S12 )
  353: *                                           (  0   0  )
  354: *
  355:       DO 10 I = 1, N
  356:          IWORK( I ) = 0
  357:    10 CONTINUE
  358:       CALL ZGEQPF( P, N, B, LDB, IWORK, TAU, WORK, RWORK, INFO )
  359: *
  360: *     Update A := A*P
  361: *
  362:       CALL ZLAPMT( FORWRD, M, N, A, LDA, IWORK )
  363: *
  364: *     Determine the effective rank of matrix B.
  365: *
  366:       L = 0
  367:       DO 20 I = 1, MIN( P, N )
  368:          IF( CABS1( B( I, I ) ).GT.TOLB )
  369:      $      L = L + 1
  370:    20 CONTINUE
  371: *
  372:       IF( WANTV ) THEN
  373: *
  374: *        Copy the details of V, and form V.
  375: *
  376:          CALL ZLASET( 'Full', P, P, CZERO, CZERO, V, LDV )
  377:          IF( P.GT.1 )
  378:      $      CALL ZLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
  379:      $                   LDV )
  380:          CALL ZUNG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
  381:       END IF
  382: *
  383: *     Clean up B
  384: *
  385:       DO 40 J = 1, L - 1
  386:          DO 30 I = J + 1, L
  387:             B( I, J ) = CZERO
  388:    30    CONTINUE
  389:    40 CONTINUE
  390:       IF( P.GT.L )
  391:      $   CALL ZLASET( 'Full', P-L, N, CZERO, CZERO, B( L+1, 1 ), LDB )
  392: *
  393:       IF( WANTQ ) THEN
  394: *
  395: *        Set Q = I and Update Q := Q*P
  396: *
  397:          CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
  398:          CALL ZLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
  399:       END IF
  400: *
  401:       IF( P.GE.L .AND. N.NE.L ) THEN
  402: *
  403: *        RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z
  404: *
  405:          CALL ZGERQ2( L, N, B, LDB, TAU, WORK, INFO )
  406: *
  407: *        Update A := A*Z**H
  408: *
  409:          CALL ZUNMR2( 'Right', 'Conjugate transpose', M, N, L, B, LDB,
  410:      $                TAU, A, LDA, WORK, INFO )
  411:          IF( WANTQ ) THEN
  412: *
  413: *           Update Q := Q*Z**H
  414: *
  415:             CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N, L, B,
  416:      $                   LDB, TAU, Q, LDQ, WORK, INFO )
  417:          END IF
  418: *
  419: *        Clean up B
  420: *
  421:          CALL ZLASET( 'Full', L, N-L, CZERO, CZERO, B, LDB )
  422:          DO 60 J = N - L + 1, N
  423:             DO 50 I = J - N + L + 1, L
  424:                B( I, J ) = CZERO
  425:    50       CONTINUE
  426:    60    CONTINUE
  427: *
  428:       END IF
  429: *
  430: *     Let              N-L     L
  431: *                A = ( A11    A12 ) M,
  432: *
  433: *     then the following does the complete QR decomposition of A11:
  434: *
  435: *              A11 = U*(  0  T12 )*P1**H
  436: *                      (  0   0  )
  437: *
  438:       DO 70 I = 1, N - L
  439:          IWORK( I ) = 0
  440:    70 CONTINUE
  441:       CALL ZGEQPF( M, N-L, A, LDA, IWORK, TAU, WORK, RWORK, INFO )
  442: *
  443: *     Determine the effective rank of A11
  444: *
  445:       K = 0
  446:       DO 80 I = 1, MIN( M, N-L )
  447:          IF( CABS1( A( I, I ) ).GT.TOLA )
  448:      $      K = K + 1
  449:    80 CONTINUE
  450: *
  451: *     Update A12 := U**H*A12, where A12 = A( 1:M, N-L+1:N )
  452: *
  453:       CALL ZUNM2R( 'Left', 'Conjugate transpose', M, L, MIN( M, N-L ),
  454:      $             A, LDA, TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
  455: *
  456:       IF( WANTU ) THEN
  457: *
  458: *        Copy the details of U, and form U
  459: *
  460:          CALL ZLASET( 'Full', M, M, CZERO, CZERO, U, LDU )
  461:          IF( M.GT.1 )
  462:      $      CALL ZLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
  463:      $                   LDU )
  464:          CALL ZUNG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
  465:       END IF
  466: *
  467:       IF( WANTQ ) THEN
  468: *
  469: *        Update Q( 1:N, 1:N-L )  = Q( 1:N, 1:N-L )*P1
  470: *
  471:          CALL ZLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
  472:       END IF
  473: *
  474: *     Clean up A: set the strictly lower triangular part of
  475: *     A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
  476: *
  477:       DO 100 J = 1, K - 1
  478:          DO 90 I = J + 1, K
  479:             A( I, J ) = CZERO
  480:    90    CONTINUE
  481:   100 CONTINUE
  482:       IF( M.GT.K )
  483:      $   CALL ZLASET( 'Full', M-K, N-L, CZERO, CZERO, A( K+1, 1 ), LDA )
  484: *
  485:       IF( N-L.GT.K ) THEN
  486: *
  487: *        RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
  488: *
  489:          CALL ZGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
  490: *
  491:          IF( WANTQ ) THEN
  492: *
  493: *           Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**H
  494: *
  495:             CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N-L, K, A,
  496:      $                   LDA, TAU, Q, LDQ, WORK, INFO )
  497:          END IF
  498: *
  499: *        Clean up A
  500: *
  501:          CALL ZLASET( 'Full', K, N-L-K, CZERO, CZERO, A, LDA )
  502:          DO 120 J = N - L - K + 1, N - L
  503:             DO 110 I = J - N + L + K + 1, K
  504:                A( I, J ) = CZERO
  505:   110       CONTINUE
  506:   120    CONTINUE
  507: *
  508:       END IF
  509: *
  510:       IF( M.GT.K ) THEN
  511: *
  512: *        QR factorization of A( K+1:M,N-L+1:N )
  513: *
  514:          CALL ZGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
  515: *
  516:          IF( WANTU ) THEN
  517: *
  518: *           Update U(:,K+1:M) := U(:,K+1:M)*U1
  519: *
  520:             CALL ZUNM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
  521:      $                   A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
  522:      $                   WORK, INFO )
  523:          END IF
  524: *
  525: *        Clean up
  526: *
  527:          DO 140 J = N - L + 1, N
  528:             DO 130 I = J - N + K + L + 1, M
  529:                A( I, J ) = CZERO
  530:   130       CONTINUE
  531:   140    CONTINUE
  532: *
  533:       END IF
  534: *
  535:       RETURN
  536: *
  537: *     End of ZGGSVP
  538: *
  539:       END

CVSweb interface <joel.bertrand@systella.fr>