Annotation of rpl/lapack/lapack/zggsvp.f, revision 1.19

1.9       bertrand    1: *> \brief \b ZGGSVP
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZGGSVP + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvp.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvp.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvp.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
                     22: *                          TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
                     23: *                          IWORK, RWORK, TAU, WORK, INFO )
1.16      bertrand   24: *
1.9       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBQ, JOBU, JOBV
                     27: *       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
                     28: *       DOUBLE PRECISION   TOLA, TOLB
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IWORK( * )
                     32: *       DOUBLE PRECISION   RWORK( * )
                     33: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                     34: *      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
                     35: *       ..
1.16      bertrand   36: *
1.9       bertrand   37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
1.14      bertrand   43: *> This routine is deprecated and has been replaced by routine ZGGSVP3.
                     44: *>
1.9       bertrand   45: *> ZGGSVP computes unitary matrices U, V and Q such that
                     46: *>
                     47: *>                    N-K-L  K    L
                     48: *>  U**H*A*Q =     K ( 0    A12  A13 )  if M-K-L >= 0;
                     49: *>                 L ( 0     0   A23 )
                     50: *>             M-K-L ( 0     0    0  )
                     51: *>
                     52: *>                  N-K-L  K    L
                     53: *>         =     K ( 0    A12  A13 )  if M-K-L < 0;
                     54: *>             M-K ( 0     0   A23 )
                     55: *>
                     56: *>                  N-K-L  K    L
                     57: *>  V**H*B*Q =   L ( 0     0   B13 )
                     58: *>             P-L ( 0     0    0  )
                     59: *>
                     60: *> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
                     61: *> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
                     62: *> otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective
1.16      bertrand   63: *> numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H.
1.9       bertrand   64: *>
                     65: *> This decomposition is the preprocessing step for computing the
                     66: *> Generalized Singular Value Decomposition (GSVD), see subroutine
                     67: *> ZGGSVD.
                     68: *> \endverbatim
                     69: *
                     70: *  Arguments:
                     71: *  ==========
                     72: *
                     73: *> \param[in] JOBU
                     74: *> \verbatim
                     75: *>          JOBU is CHARACTER*1
                     76: *>          = 'U':  Unitary matrix U is computed;
                     77: *>          = 'N':  U is not computed.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] JOBV
                     81: *> \verbatim
                     82: *>          JOBV is CHARACTER*1
                     83: *>          = 'V':  Unitary matrix V is computed;
                     84: *>          = 'N':  V is not computed.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in] JOBQ
                     88: *> \verbatim
                     89: *>          JOBQ is CHARACTER*1
                     90: *>          = 'Q':  Unitary matrix Q is computed;
                     91: *>          = 'N':  Q is not computed.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] M
                     95: *> \verbatim
                     96: *>          M is INTEGER
                     97: *>          The number of rows of the matrix A.  M >= 0.
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] P
                    101: *> \verbatim
                    102: *>          P is INTEGER
                    103: *>          The number of rows of the matrix B.  P >= 0.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in] N
                    107: *> \verbatim
                    108: *>          N is INTEGER
                    109: *>          The number of columns of the matrices A and B.  N >= 0.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in,out] A
                    113: *> \verbatim
                    114: *>          A is COMPLEX*16 array, dimension (LDA,N)
                    115: *>          On entry, the M-by-N matrix A.
                    116: *>          On exit, A contains the triangular (or trapezoidal) matrix
                    117: *>          described in the Purpose section.
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in] LDA
                    121: *> \verbatim
                    122: *>          LDA is INTEGER
                    123: *>          The leading dimension of the array A. LDA >= max(1,M).
                    124: *> \endverbatim
                    125: *>
                    126: *> \param[in,out] B
                    127: *> \verbatim
                    128: *>          B is COMPLEX*16 array, dimension (LDB,N)
                    129: *>          On entry, the P-by-N matrix B.
                    130: *>          On exit, B contains the triangular matrix described in
                    131: *>          the Purpose section.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in] LDB
                    135: *> \verbatim
                    136: *>          LDB is INTEGER
                    137: *>          The leading dimension of the array B. LDB >= max(1,P).
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[in] TOLA
                    141: *> \verbatim
                    142: *>          TOLA is DOUBLE PRECISION
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in] TOLB
                    146: *> \verbatim
                    147: *>          TOLB is DOUBLE PRECISION
                    148: *>
                    149: *>          TOLA and TOLB are the thresholds to determine the effective
                    150: *>          numerical rank of matrix B and a subblock of A. Generally,
                    151: *>          they are set to
                    152: *>             TOLA = MAX(M,N)*norm(A)*MAZHEPS,
                    153: *>             TOLB = MAX(P,N)*norm(B)*MAZHEPS.
                    154: *>          The size of TOLA and TOLB may affect the size of backward
                    155: *>          errors of the decomposition.
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[out] K
                    159: *> \verbatim
                    160: *>          K is INTEGER
                    161: *> \endverbatim
                    162: *>
                    163: *> \param[out] L
                    164: *> \verbatim
                    165: *>          L is INTEGER
                    166: *>
                    167: *>          On exit, K and L specify the dimension of the subblocks
                    168: *>          described in Purpose section.
                    169: *>          K + L = effective numerical rank of (A**H,B**H)**H.
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[out] U
                    173: *> \verbatim
                    174: *>          U is COMPLEX*16 array, dimension (LDU,M)
                    175: *>          If JOBU = 'U', U contains the unitary matrix U.
                    176: *>          If JOBU = 'N', U is not referenced.
                    177: *> \endverbatim
                    178: *>
                    179: *> \param[in] LDU
                    180: *> \verbatim
                    181: *>          LDU is INTEGER
                    182: *>          The leading dimension of the array U. LDU >= max(1,M) if
                    183: *>          JOBU = 'U'; LDU >= 1 otherwise.
                    184: *> \endverbatim
                    185: *>
                    186: *> \param[out] V
                    187: *> \verbatim
                    188: *>          V is COMPLEX*16 array, dimension (LDV,P)
                    189: *>          If JOBV = 'V', V contains the unitary matrix V.
                    190: *>          If JOBV = 'N', V is not referenced.
                    191: *> \endverbatim
                    192: *>
                    193: *> \param[in] LDV
                    194: *> \verbatim
                    195: *>          LDV is INTEGER
                    196: *>          The leading dimension of the array V. LDV >= max(1,P) if
                    197: *>          JOBV = 'V'; LDV >= 1 otherwise.
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[out] Q
                    201: *> \verbatim
                    202: *>          Q is COMPLEX*16 array, dimension (LDQ,N)
                    203: *>          If JOBQ = 'Q', Q contains the unitary matrix Q.
                    204: *>          If JOBQ = 'N', Q is not referenced.
                    205: *> \endverbatim
                    206: *>
                    207: *> \param[in] LDQ
                    208: *> \verbatim
                    209: *>          LDQ is INTEGER
                    210: *>          The leading dimension of the array Q. LDQ >= max(1,N) if
                    211: *>          JOBQ = 'Q'; LDQ >= 1 otherwise.
                    212: *> \endverbatim
                    213: *>
                    214: *> \param[out] IWORK
                    215: *> \verbatim
                    216: *>          IWORK is INTEGER array, dimension (N)
                    217: *> \endverbatim
                    218: *>
                    219: *> \param[out] RWORK
                    220: *> \verbatim
                    221: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
                    222: *> \endverbatim
                    223: *>
                    224: *> \param[out] TAU
                    225: *> \verbatim
                    226: *>          TAU is COMPLEX*16 array, dimension (N)
                    227: *> \endverbatim
                    228: *>
                    229: *> \param[out] WORK
                    230: *> \verbatim
                    231: *>          WORK is COMPLEX*16 array, dimension (max(3*N,M,P))
                    232: *> \endverbatim
                    233: *>
                    234: *> \param[out] INFO
                    235: *> \verbatim
                    236: *>          INFO is INTEGER
                    237: *>          = 0:  successful exit
                    238: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    239: *> \endverbatim
                    240: *
                    241: *  Authors:
                    242: *  ========
                    243: *
1.16      bertrand  244: *> \author Univ. of Tennessee
                    245: *> \author Univ. of California Berkeley
                    246: *> \author Univ. of Colorado Denver
                    247: *> \author NAG Ltd.
1.9       bertrand  248: *
                    249: *> \ingroup complex16OTHERcomputational
                    250: *
                    251: *> \par Further Details:
                    252: *  =====================
                    253: *>
                    254: *> \verbatim
                    255: *>
                    256: *>  The subroutine uses LAPACK subroutine ZGEQPF for the QR factorization
                    257: *>  with column pivoting to detect the effective numerical rank of the
                    258: *>  a matrix. It may be replaced by a better rank determination strategy.
                    259: *> \endverbatim
                    260: *>
                    261: *  =====================================================================
1.1       bertrand  262:       SUBROUTINE ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
                    263:      $                   TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
                    264:      $                   IWORK, RWORK, TAU, WORK, INFO )
                    265: *
1.19    ! bertrand  266: *  -- LAPACK computational routine --
1.1       bertrand  267: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    268: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    269: *
                    270: *     .. Scalar Arguments ..
                    271:       CHARACTER          JOBQ, JOBU, JOBV
                    272:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
                    273:       DOUBLE PRECISION   TOLA, TOLB
                    274: *     ..
                    275: *     .. Array Arguments ..
                    276:       INTEGER            IWORK( * )
                    277:       DOUBLE PRECISION   RWORK( * )
                    278:       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                    279:      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
                    280: *     ..
                    281: *
                    282: *  =====================================================================
                    283: *
                    284: *     .. Parameters ..
                    285:       COMPLEX*16         CZERO, CONE
                    286:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    287:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    288: *     ..
                    289: *     .. Local Scalars ..
                    290:       LOGICAL            FORWRD, WANTQ, WANTU, WANTV
                    291:       INTEGER            I, J
                    292:       COMPLEX*16         T
                    293: *     ..
                    294: *     .. External Functions ..
                    295:       LOGICAL            LSAME
                    296:       EXTERNAL           LSAME
                    297: *     ..
                    298: *     .. External Subroutines ..
                    299:       EXTERNAL           XERBLA, ZGEQPF, ZGEQR2, ZGERQ2, ZLACPY, ZLAPMT,
                    300:      $                   ZLASET, ZUNG2R, ZUNM2R, ZUNMR2
                    301: *     ..
                    302: *     .. Intrinsic Functions ..
                    303:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
                    304: *     ..
                    305: *     .. Statement Functions ..
                    306:       DOUBLE PRECISION   CABS1
                    307: *     ..
                    308: *     .. Statement Function definitions ..
                    309:       CABS1( T ) = ABS( DBLE( T ) ) + ABS( DIMAG( T ) )
                    310: *     ..
                    311: *     .. Executable Statements ..
                    312: *
                    313: *     Test the input parameters
                    314: *
                    315:       WANTU = LSAME( JOBU, 'U' )
                    316:       WANTV = LSAME( JOBV, 'V' )
                    317:       WANTQ = LSAME( JOBQ, 'Q' )
                    318:       FORWRD = .TRUE.
                    319: *
                    320:       INFO = 0
                    321:       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
                    322:          INFO = -1
                    323:       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
                    324:          INFO = -2
                    325:       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
                    326:          INFO = -3
                    327:       ELSE IF( M.LT.0 ) THEN
                    328:          INFO = -4
                    329:       ELSE IF( P.LT.0 ) THEN
                    330:          INFO = -5
                    331:       ELSE IF( N.LT.0 ) THEN
                    332:          INFO = -6
                    333:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    334:          INFO = -8
                    335:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
                    336:          INFO = -10
                    337:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
                    338:          INFO = -16
                    339:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
                    340:          INFO = -18
                    341:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
                    342:          INFO = -20
                    343:       END IF
                    344:       IF( INFO.NE.0 ) THEN
                    345:          CALL XERBLA( 'ZGGSVP', -INFO )
                    346:          RETURN
                    347:       END IF
                    348: *
                    349: *     QR with column pivoting of B: B*P = V*( S11 S12 )
                    350: *                                           (  0   0  )
                    351: *
                    352:       DO 10 I = 1, N
                    353:          IWORK( I ) = 0
                    354:    10 CONTINUE
                    355:       CALL ZGEQPF( P, N, B, LDB, IWORK, TAU, WORK, RWORK, INFO )
                    356: *
                    357: *     Update A := A*P
                    358: *
                    359:       CALL ZLAPMT( FORWRD, M, N, A, LDA, IWORK )
                    360: *
                    361: *     Determine the effective rank of matrix B.
                    362: *
                    363:       L = 0
                    364:       DO 20 I = 1, MIN( P, N )
                    365:          IF( CABS1( B( I, I ) ).GT.TOLB )
                    366:      $      L = L + 1
                    367:    20 CONTINUE
                    368: *
                    369:       IF( WANTV ) THEN
                    370: *
                    371: *        Copy the details of V, and form V.
                    372: *
                    373:          CALL ZLASET( 'Full', P, P, CZERO, CZERO, V, LDV )
                    374:          IF( P.GT.1 )
                    375:      $      CALL ZLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
                    376:      $                   LDV )
                    377:          CALL ZUNG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
                    378:       END IF
                    379: *
                    380: *     Clean up B
                    381: *
                    382:       DO 40 J = 1, L - 1
                    383:          DO 30 I = J + 1, L
                    384:             B( I, J ) = CZERO
                    385:    30    CONTINUE
                    386:    40 CONTINUE
                    387:       IF( P.GT.L )
                    388:      $   CALL ZLASET( 'Full', P-L, N, CZERO, CZERO, B( L+1, 1 ), LDB )
                    389: *
                    390:       IF( WANTQ ) THEN
                    391: *
                    392: *        Set Q = I and Update Q := Q*P
                    393: *
                    394:          CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
                    395:          CALL ZLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
                    396:       END IF
                    397: *
                    398:       IF( P.GE.L .AND. N.NE.L ) THEN
                    399: *
                    400: *        RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z
                    401: *
                    402:          CALL ZGERQ2( L, N, B, LDB, TAU, WORK, INFO )
                    403: *
1.8       bertrand  404: *        Update A := A*Z**H
1.1       bertrand  405: *
                    406:          CALL ZUNMR2( 'Right', 'Conjugate transpose', M, N, L, B, LDB,
                    407:      $                TAU, A, LDA, WORK, INFO )
                    408:          IF( WANTQ ) THEN
                    409: *
1.8       bertrand  410: *           Update Q := Q*Z**H
1.1       bertrand  411: *
                    412:             CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N, L, B,
                    413:      $                   LDB, TAU, Q, LDQ, WORK, INFO )
                    414:          END IF
                    415: *
                    416: *        Clean up B
                    417: *
                    418:          CALL ZLASET( 'Full', L, N-L, CZERO, CZERO, B, LDB )
                    419:          DO 60 J = N - L + 1, N
                    420:             DO 50 I = J - N + L + 1, L
                    421:                B( I, J ) = CZERO
                    422:    50       CONTINUE
                    423:    60    CONTINUE
                    424: *
                    425:       END IF
                    426: *
                    427: *     Let              N-L     L
                    428: *                A = ( A11    A12 ) M,
                    429: *
                    430: *     then the following does the complete QR decomposition of A11:
                    431: *
1.8       bertrand  432: *              A11 = U*(  0  T12 )*P1**H
1.1       bertrand  433: *                      (  0   0  )
                    434: *
                    435:       DO 70 I = 1, N - L
                    436:          IWORK( I ) = 0
                    437:    70 CONTINUE
                    438:       CALL ZGEQPF( M, N-L, A, LDA, IWORK, TAU, WORK, RWORK, INFO )
                    439: *
                    440: *     Determine the effective rank of A11
                    441: *
                    442:       K = 0
                    443:       DO 80 I = 1, MIN( M, N-L )
                    444:          IF( CABS1( A( I, I ) ).GT.TOLA )
                    445:      $      K = K + 1
                    446:    80 CONTINUE
                    447: *
1.8       bertrand  448: *     Update A12 := U**H*A12, where A12 = A( 1:M, N-L+1:N )
1.1       bertrand  449: *
                    450:       CALL ZUNM2R( 'Left', 'Conjugate transpose', M, L, MIN( M, N-L ),
                    451:      $             A, LDA, TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
                    452: *
                    453:       IF( WANTU ) THEN
                    454: *
                    455: *        Copy the details of U, and form U
                    456: *
                    457:          CALL ZLASET( 'Full', M, M, CZERO, CZERO, U, LDU )
                    458:          IF( M.GT.1 )
                    459:      $      CALL ZLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
                    460:      $                   LDU )
                    461:          CALL ZUNG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
                    462:       END IF
                    463: *
                    464:       IF( WANTQ ) THEN
                    465: *
                    466: *        Update Q( 1:N, 1:N-L )  = Q( 1:N, 1:N-L )*P1
                    467: *
                    468:          CALL ZLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
                    469:       END IF
                    470: *
                    471: *     Clean up A: set the strictly lower triangular part of
                    472: *     A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
                    473: *
                    474:       DO 100 J = 1, K - 1
                    475:          DO 90 I = J + 1, K
                    476:             A( I, J ) = CZERO
                    477:    90    CONTINUE
                    478:   100 CONTINUE
                    479:       IF( M.GT.K )
                    480:      $   CALL ZLASET( 'Full', M-K, N-L, CZERO, CZERO, A( K+1, 1 ), LDA )
                    481: *
                    482:       IF( N-L.GT.K ) THEN
                    483: *
                    484: *        RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
                    485: *
                    486:          CALL ZGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
                    487: *
                    488:          IF( WANTQ ) THEN
                    489: *
1.8       bertrand  490: *           Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**H
1.1       bertrand  491: *
                    492:             CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N-L, K, A,
                    493:      $                   LDA, TAU, Q, LDQ, WORK, INFO )
                    494:          END IF
                    495: *
                    496: *        Clean up A
                    497: *
                    498:          CALL ZLASET( 'Full', K, N-L-K, CZERO, CZERO, A, LDA )
                    499:          DO 120 J = N - L - K + 1, N - L
                    500:             DO 110 I = J - N + L + K + 1, K
                    501:                A( I, J ) = CZERO
                    502:   110       CONTINUE
                    503:   120    CONTINUE
                    504: *
                    505:       END IF
                    506: *
                    507:       IF( M.GT.K ) THEN
                    508: *
                    509: *        QR factorization of A( K+1:M,N-L+1:N )
                    510: *
                    511:          CALL ZGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
                    512: *
                    513:          IF( WANTU ) THEN
                    514: *
                    515: *           Update U(:,K+1:M) := U(:,K+1:M)*U1
                    516: *
                    517:             CALL ZUNM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
                    518:      $                   A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
                    519:      $                   WORK, INFO )
                    520:          END IF
                    521: *
                    522: *        Clean up
                    523: *
                    524:          DO 140 J = N - L + 1, N
                    525:             DO 130 I = J - N + K + L + 1, M
                    526:                A( I, J ) = CZERO
                    527:   130       CONTINUE
                    528:   140    CONTINUE
                    529: *
                    530:       END IF
                    531: *
                    532:       RETURN
                    533: *
                    534: *     End of ZGGSVP
                    535: *
                    536:       END

CVSweb interface <joel.bertrand@systella.fr>