Annotation of rpl/lapack/lapack/zggsvp.f, revision 1.12

1.9       bertrand    1: *> \brief \b ZGGSVP
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZGGSVP + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvp.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvp.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvp.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
                     22: *                          TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
                     23: *                          IWORK, RWORK, TAU, WORK, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBQ, JOBU, JOBV
                     27: *       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
                     28: *       DOUBLE PRECISION   TOLA, TOLB
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IWORK( * )
                     32: *       DOUBLE PRECISION   RWORK( * )
                     33: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                     34: *      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
                     35: *       ..
                     36: *  
                     37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> ZGGSVP computes unitary matrices U, V and Q such that
                     44: *>
                     45: *>                    N-K-L  K    L
                     46: *>  U**H*A*Q =     K ( 0    A12  A13 )  if M-K-L >= 0;
                     47: *>                 L ( 0     0   A23 )
                     48: *>             M-K-L ( 0     0    0  )
                     49: *>
                     50: *>                  N-K-L  K    L
                     51: *>         =     K ( 0    A12  A13 )  if M-K-L < 0;
                     52: *>             M-K ( 0     0   A23 )
                     53: *>
                     54: *>                  N-K-L  K    L
                     55: *>  V**H*B*Q =   L ( 0     0   B13 )
                     56: *>             P-L ( 0     0    0  )
                     57: *>
                     58: *> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
                     59: *> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
                     60: *> otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective
                     61: *> numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H. 
                     62: *>
                     63: *> This decomposition is the preprocessing step for computing the
                     64: *> Generalized Singular Value Decomposition (GSVD), see subroutine
                     65: *> ZGGSVD.
                     66: *> \endverbatim
                     67: *
                     68: *  Arguments:
                     69: *  ==========
                     70: *
                     71: *> \param[in] JOBU
                     72: *> \verbatim
                     73: *>          JOBU is CHARACTER*1
                     74: *>          = 'U':  Unitary matrix U is computed;
                     75: *>          = 'N':  U is not computed.
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in] JOBV
                     79: *> \verbatim
                     80: *>          JOBV is CHARACTER*1
                     81: *>          = 'V':  Unitary matrix V is computed;
                     82: *>          = 'N':  V is not computed.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] JOBQ
                     86: *> \verbatim
                     87: *>          JOBQ is CHARACTER*1
                     88: *>          = 'Q':  Unitary matrix Q is computed;
                     89: *>          = 'N':  Q is not computed.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] M
                     93: *> \verbatim
                     94: *>          M is INTEGER
                     95: *>          The number of rows of the matrix A.  M >= 0.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] P
                     99: *> \verbatim
                    100: *>          P is INTEGER
                    101: *>          The number of rows of the matrix B.  P >= 0.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in] N
                    105: *> \verbatim
                    106: *>          N is INTEGER
                    107: *>          The number of columns of the matrices A and B.  N >= 0.
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[in,out] A
                    111: *> \verbatim
                    112: *>          A is COMPLEX*16 array, dimension (LDA,N)
                    113: *>          On entry, the M-by-N matrix A.
                    114: *>          On exit, A contains the triangular (or trapezoidal) matrix
                    115: *>          described in the Purpose section.
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in] LDA
                    119: *> \verbatim
                    120: *>          LDA is INTEGER
                    121: *>          The leading dimension of the array A. LDA >= max(1,M).
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in,out] B
                    125: *> \verbatim
                    126: *>          B is COMPLEX*16 array, dimension (LDB,N)
                    127: *>          On entry, the P-by-N matrix B.
                    128: *>          On exit, B contains the triangular matrix described in
                    129: *>          the Purpose section.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in] LDB
                    133: *> \verbatim
                    134: *>          LDB is INTEGER
                    135: *>          The leading dimension of the array B. LDB >= max(1,P).
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[in] TOLA
                    139: *> \verbatim
                    140: *>          TOLA is DOUBLE PRECISION
                    141: *> \endverbatim
                    142: *>
                    143: *> \param[in] TOLB
                    144: *> \verbatim
                    145: *>          TOLB is DOUBLE PRECISION
                    146: *>
                    147: *>          TOLA and TOLB are the thresholds to determine the effective
                    148: *>          numerical rank of matrix B and a subblock of A. Generally,
                    149: *>          they are set to
                    150: *>             TOLA = MAX(M,N)*norm(A)*MAZHEPS,
                    151: *>             TOLB = MAX(P,N)*norm(B)*MAZHEPS.
                    152: *>          The size of TOLA and TOLB may affect the size of backward
                    153: *>          errors of the decomposition.
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[out] K
                    157: *> \verbatim
                    158: *>          K is INTEGER
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[out] L
                    162: *> \verbatim
                    163: *>          L is INTEGER
                    164: *>
                    165: *>          On exit, K and L specify the dimension of the subblocks
                    166: *>          described in Purpose section.
                    167: *>          K + L = effective numerical rank of (A**H,B**H)**H.
                    168: *> \endverbatim
                    169: *>
                    170: *> \param[out] U
                    171: *> \verbatim
                    172: *>          U is COMPLEX*16 array, dimension (LDU,M)
                    173: *>          If JOBU = 'U', U contains the unitary matrix U.
                    174: *>          If JOBU = 'N', U is not referenced.
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[in] LDU
                    178: *> \verbatim
                    179: *>          LDU is INTEGER
                    180: *>          The leading dimension of the array U. LDU >= max(1,M) if
                    181: *>          JOBU = 'U'; LDU >= 1 otherwise.
                    182: *> \endverbatim
                    183: *>
                    184: *> \param[out] V
                    185: *> \verbatim
                    186: *>          V is COMPLEX*16 array, dimension (LDV,P)
                    187: *>          If JOBV = 'V', V contains the unitary matrix V.
                    188: *>          If JOBV = 'N', V is not referenced.
                    189: *> \endverbatim
                    190: *>
                    191: *> \param[in] LDV
                    192: *> \verbatim
                    193: *>          LDV is INTEGER
                    194: *>          The leading dimension of the array V. LDV >= max(1,P) if
                    195: *>          JOBV = 'V'; LDV >= 1 otherwise.
                    196: *> \endverbatim
                    197: *>
                    198: *> \param[out] Q
                    199: *> \verbatim
                    200: *>          Q is COMPLEX*16 array, dimension (LDQ,N)
                    201: *>          If JOBQ = 'Q', Q contains the unitary matrix Q.
                    202: *>          If JOBQ = 'N', Q is not referenced.
                    203: *> \endverbatim
                    204: *>
                    205: *> \param[in] LDQ
                    206: *> \verbatim
                    207: *>          LDQ is INTEGER
                    208: *>          The leading dimension of the array Q. LDQ >= max(1,N) if
                    209: *>          JOBQ = 'Q'; LDQ >= 1 otherwise.
                    210: *> \endverbatim
                    211: *>
                    212: *> \param[out] IWORK
                    213: *> \verbatim
                    214: *>          IWORK is INTEGER array, dimension (N)
                    215: *> \endverbatim
                    216: *>
                    217: *> \param[out] RWORK
                    218: *> \verbatim
                    219: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
                    220: *> \endverbatim
                    221: *>
                    222: *> \param[out] TAU
                    223: *> \verbatim
                    224: *>          TAU is COMPLEX*16 array, dimension (N)
                    225: *> \endverbatim
                    226: *>
                    227: *> \param[out] WORK
                    228: *> \verbatim
                    229: *>          WORK is COMPLEX*16 array, dimension (max(3*N,M,P))
                    230: *> \endverbatim
                    231: *>
                    232: *> \param[out] INFO
                    233: *> \verbatim
                    234: *>          INFO is INTEGER
                    235: *>          = 0:  successful exit
                    236: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    237: *> \endverbatim
                    238: *
                    239: *  Authors:
                    240: *  ========
                    241: *
                    242: *> \author Univ. of Tennessee 
                    243: *> \author Univ. of California Berkeley 
                    244: *> \author Univ. of Colorado Denver 
                    245: *> \author NAG Ltd. 
                    246: *
                    247: *> \date November 2011
                    248: *
                    249: *> \ingroup complex16OTHERcomputational
                    250: *
                    251: *> \par Further Details:
                    252: *  =====================
                    253: *>
                    254: *> \verbatim
                    255: *>
                    256: *>  The subroutine uses LAPACK subroutine ZGEQPF for the QR factorization
                    257: *>  with column pivoting to detect the effective numerical rank of the
                    258: *>  a matrix. It may be replaced by a better rank determination strategy.
                    259: *> \endverbatim
                    260: *>
                    261: *  =====================================================================
1.1       bertrand  262:       SUBROUTINE ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
                    263:      $                   TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
                    264:      $                   IWORK, RWORK, TAU, WORK, INFO )
                    265: *
1.9       bertrand  266: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  267: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    268: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  269: *     November 2011
1.1       bertrand  270: *
                    271: *     .. Scalar Arguments ..
                    272:       CHARACTER          JOBQ, JOBU, JOBV
                    273:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
                    274:       DOUBLE PRECISION   TOLA, TOLB
                    275: *     ..
                    276: *     .. Array Arguments ..
                    277:       INTEGER            IWORK( * )
                    278:       DOUBLE PRECISION   RWORK( * )
                    279:       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                    280:      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
                    281: *     ..
                    282: *
                    283: *  =====================================================================
                    284: *
                    285: *     .. Parameters ..
                    286:       COMPLEX*16         CZERO, CONE
                    287:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    288:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    289: *     ..
                    290: *     .. Local Scalars ..
                    291:       LOGICAL            FORWRD, WANTQ, WANTU, WANTV
                    292:       INTEGER            I, J
                    293:       COMPLEX*16         T
                    294: *     ..
                    295: *     .. External Functions ..
                    296:       LOGICAL            LSAME
                    297:       EXTERNAL           LSAME
                    298: *     ..
                    299: *     .. External Subroutines ..
                    300:       EXTERNAL           XERBLA, ZGEQPF, ZGEQR2, ZGERQ2, ZLACPY, ZLAPMT,
                    301:      $                   ZLASET, ZUNG2R, ZUNM2R, ZUNMR2
                    302: *     ..
                    303: *     .. Intrinsic Functions ..
                    304:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
                    305: *     ..
                    306: *     .. Statement Functions ..
                    307:       DOUBLE PRECISION   CABS1
                    308: *     ..
                    309: *     .. Statement Function definitions ..
                    310:       CABS1( T ) = ABS( DBLE( T ) ) + ABS( DIMAG( T ) )
                    311: *     ..
                    312: *     .. Executable Statements ..
                    313: *
                    314: *     Test the input parameters
                    315: *
                    316:       WANTU = LSAME( JOBU, 'U' )
                    317:       WANTV = LSAME( JOBV, 'V' )
                    318:       WANTQ = LSAME( JOBQ, 'Q' )
                    319:       FORWRD = .TRUE.
                    320: *
                    321:       INFO = 0
                    322:       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
                    323:          INFO = -1
                    324:       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
                    325:          INFO = -2
                    326:       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
                    327:          INFO = -3
                    328:       ELSE IF( M.LT.0 ) THEN
                    329:          INFO = -4
                    330:       ELSE IF( P.LT.0 ) THEN
                    331:          INFO = -5
                    332:       ELSE IF( N.LT.0 ) THEN
                    333:          INFO = -6
                    334:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    335:          INFO = -8
                    336:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
                    337:          INFO = -10
                    338:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
                    339:          INFO = -16
                    340:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
                    341:          INFO = -18
                    342:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
                    343:          INFO = -20
                    344:       END IF
                    345:       IF( INFO.NE.0 ) THEN
                    346:          CALL XERBLA( 'ZGGSVP', -INFO )
                    347:          RETURN
                    348:       END IF
                    349: *
                    350: *     QR with column pivoting of B: B*P = V*( S11 S12 )
                    351: *                                           (  0   0  )
                    352: *
                    353:       DO 10 I = 1, N
                    354:          IWORK( I ) = 0
                    355:    10 CONTINUE
                    356:       CALL ZGEQPF( P, N, B, LDB, IWORK, TAU, WORK, RWORK, INFO )
                    357: *
                    358: *     Update A := A*P
                    359: *
                    360:       CALL ZLAPMT( FORWRD, M, N, A, LDA, IWORK )
                    361: *
                    362: *     Determine the effective rank of matrix B.
                    363: *
                    364:       L = 0
                    365:       DO 20 I = 1, MIN( P, N )
                    366:          IF( CABS1( B( I, I ) ).GT.TOLB )
                    367:      $      L = L + 1
                    368:    20 CONTINUE
                    369: *
                    370:       IF( WANTV ) THEN
                    371: *
                    372: *        Copy the details of V, and form V.
                    373: *
                    374:          CALL ZLASET( 'Full', P, P, CZERO, CZERO, V, LDV )
                    375:          IF( P.GT.1 )
                    376:      $      CALL ZLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
                    377:      $                   LDV )
                    378:          CALL ZUNG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
                    379:       END IF
                    380: *
                    381: *     Clean up B
                    382: *
                    383:       DO 40 J = 1, L - 1
                    384:          DO 30 I = J + 1, L
                    385:             B( I, J ) = CZERO
                    386:    30    CONTINUE
                    387:    40 CONTINUE
                    388:       IF( P.GT.L )
                    389:      $   CALL ZLASET( 'Full', P-L, N, CZERO, CZERO, B( L+1, 1 ), LDB )
                    390: *
                    391:       IF( WANTQ ) THEN
                    392: *
                    393: *        Set Q = I and Update Q := Q*P
                    394: *
                    395:          CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
                    396:          CALL ZLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
                    397:       END IF
                    398: *
                    399:       IF( P.GE.L .AND. N.NE.L ) THEN
                    400: *
                    401: *        RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z
                    402: *
                    403:          CALL ZGERQ2( L, N, B, LDB, TAU, WORK, INFO )
                    404: *
1.8       bertrand  405: *        Update A := A*Z**H
1.1       bertrand  406: *
                    407:          CALL ZUNMR2( 'Right', 'Conjugate transpose', M, N, L, B, LDB,
                    408:      $                TAU, A, LDA, WORK, INFO )
                    409:          IF( WANTQ ) THEN
                    410: *
1.8       bertrand  411: *           Update Q := Q*Z**H
1.1       bertrand  412: *
                    413:             CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N, L, B,
                    414:      $                   LDB, TAU, Q, LDQ, WORK, INFO )
                    415:          END IF
                    416: *
                    417: *        Clean up B
                    418: *
                    419:          CALL ZLASET( 'Full', L, N-L, CZERO, CZERO, B, LDB )
                    420:          DO 60 J = N - L + 1, N
                    421:             DO 50 I = J - N + L + 1, L
                    422:                B( I, J ) = CZERO
                    423:    50       CONTINUE
                    424:    60    CONTINUE
                    425: *
                    426:       END IF
                    427: *
                    428: *     Let              N-L     L
                    429: *                A = ( A11    A12 ) M,
                    430: *
                    431: *     then the following does the complete QR decomposition of A11:
                    432: *
1.8       bertrand  433: *              A11 = U*(  0  T12 )*P1**H
1.1       bertrand  434: *                      (  0   0  )
                    435: *
                    436:       DO 70 I = 1, N - L
                    437:          IWORK( I ) = 0
                    438:    70 CONTINUE
                    439:       CALL ZGEQPF( M, N-L, A, LDA, IWORK, TAU, WORK, RWORK, INFO )
                    440: *
                    441: *     Determine the effective rank of A11
                    442: *
                    443:       K = 0
                    444:       DO 80 I = 1, MIN( M, N-L )
                    445:          IF( CABS1( A( I, I ) ).GT.TOLA )
                    446:      $      K = K + 1
                    447:    80 CONTINUE
                    448: *
1.8       bertrand  449: *     Update A12 := U**H*A12, where A12 = A( 1:M, N-L+1:N )
1.1       bertrand  450: *
                    451:       CALL ZUNM2R( 'Left', 'Conjugate transpose', M, L, MIN( M, N-L ),
                    452:      $             A, LDA, TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
                    453: *
                    454:       IF( WANTU ) THEN
                    455: *
                    456: *        Copy the details of U, and form U
                    457: *
                    458:          CALL ZLASET( 'Full', M, M, CZERO, CZERO, U, LDU )
                    459:          IF( M.GT.1 )
                    460:      $      CALL ZLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
                    461:      $                   LDU )
                    462:          CALL ZUNG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
                    463:       END IF
                    464: *
                    465:       IF( WANTQ ) THEN
                    466: *
                    467: *        Update Q( 1:N, 1:N-L )  = Q( 1:N, 1:N-L )*P1
                    468: *
                    469:          CALL ZLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
                    470:       END IF
                    471: *
                    472: *     Clean up A: set the strictly lower triangular part of
                    473: *     A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
                    474: *
                    475:       DO 100 J = 1, K - 1
                    476:          DO 90 I = J + 1, K
                    477:             A( I, J ) = CZERO
                    478:    90    CONTINUE
                    479:   100 CONTINUE
                    480:       IF( M.GT.K )
                    481:      $   CALL ZLASET( 'Full', M-K, N-L, CZERO, CZERO, A( K+1, 1 ), LDA )
                    482: *
                    483:       IF( N-L.GT.K ) THEN
                    484: *
                    485: *        RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
                    486: *
                    487:          CALL ZGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
                    488: *
                    489:          IF( WANTQ ) THEN
                    490: *
1.8       bertrand  491: *           Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**H
1.1       bertrand  492: *
                    493:             CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N-L, K, A,
                    494:      $                   LDA, TAU, Q, LDQ, WORK, INFO )
                    495:          END IF
                    496: *
                    497: *        Clean up A
                    498: *
                    499:          CALL ZLASET( 'Full', K, N-L-K, CZERO, CZERO, A, LDA )
                    500:          DO 120 J = N - L - K + 1, N - L
                    501:             DO 110 I = J - N + L + K + 1, K
                    502:                A( I, J ) = CZERO
                    503:   110       CONTINUE
                    504:   120    CONTINUE
                    505: *
                    506:       END IF
                    507: *
                    508:       IF( M.GT.K ) THEN
                    509: *
                    510: *        QR factorization of A( K+1:M,N-L+1:N )
                    511: *
                    512:          CALL ZGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
                    513: *
                    514:          IF( WANTU ) THEN
                    515: *
                    516: *           Update U(:,K+1:M) := U(:,K+1:M)*U1
                    517: *
                    518:             CALL ZUNM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
                    519:      $                   A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
                    520:      $                   WORK, INFO )
                    521:          END IF
                    522: *
                    523: *        Clean up
                    524: *
                    525:          DO 140 J = N - L + 1, N
                    526:             DO 130 I = J - N + K + L + 1, M
                    527:                A( I, J ) = CZERO
                    528:   130       CONTINUE
                    529:   140    CONTINUE
                    530: *
                    531:       END IF
                    532: *
                    533:       RETURN
                    534: *
                    535: *     End of ZGGSVP
                    536: *
                    537:       END

CVSweb interface <joel.bertrand@systella.fr>