Annotation of rpl/lapack/lapack/zggsvd3.f, revision 1.1

1.1     ! bertrand    1: *> \brief <b> ZGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZGGSVD3 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvd3.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvd3.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvd3.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZGGSVD3( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
        !            22: *                           LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
        !            23: *                           LWORK, RWORK, IWORK, INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          JOBQ, JOBU, JOBV
        !            27: *       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK
        !            28: *       ..
        !            29: *       .. Array Arguments ..
        !            30: *       INTEGER            IWORK( * )
        !            31: *       DOUBLE PRECISION   ALPHA( * ), BETA( * ), RWORK( * )
        !            32: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
        !            33: *      $                   U( LDU, * ), V( LDV, * ), WORK( * )
        !            34: *       ..
        !            35: *  
        !            36: *
        !            37: *> \par Purpose:
        !            38: *  =============
        !            39: *>
        !            40: *> \verbatim
        !            41: *>
        !            42: *> ZGGSVD3 computes the generalized singular value decomposition (GSVD)
        !            43: *> of an M-by-N complex matrix A and P-by-N complex matrix B:
        !            44: *>
        !            45: *>       U**H*A*Q = D1*( 0 R ),    V**H*B*Q = D2*( 0 R )
        !            46: *>
        !            47: *> where U, V and Q are unitary matrices.
        !            48: *> Let K+L = the effective numerical rank of the
        !            49: *> matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
        !            50: *> triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
        !            51: *> matrices and of the following structures, respectively:
        !            52: *>
        !            53: *> If M-K-L >= 0,
        !            54: *>
        !            55: *>                     K  L
        !            56: *>        D1 =     K ( I  0 )
        !            57: *>                 L ( 0  C )
        !            58: *>             M-K-L ( 0  0 )
        !            59: *>
        !            60: *>                   K  L
        !            61: *>        D2 =   L ( 0  S )
        !            62: *>             P-L ( 0  0 )
        !            63: *>
        !            64: *>                 N-K-L  K    L
        !            65: *>   ( 0 R ) = K (  0   R11  R12 )
        !            66: *>             L (  0    0   R22 )
        !            67: *> where
        !            68: *>
        !            69: *>   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
        !            70: *>   S = diag( BETA(K+1),  ... , BETA(K+L) ),
        !            71: *>   C**2 + S**2 = I.
        !            72: *>
        !            73: *>   R is stored in A(1:K+L,N-K-L+1:N) on exit.
        !            74: *>
        !            75: *> If M-K-L < 0,
        !            76: *>
        !            77: *>                   K M-K K+L-M
        !            78: *>        D1 =   K ( I  0    0   )
        !            79: *>             M-K ( 0  C    0   )
        !            80: *>
        !            81: *>                     K M-K K+L-M
        !            82: *>        D2 =   M-K ( 0  S    0  )
        !            83: *>             K+L-M ( 0  0    I  )
        !            84: *>               P-L ( 0  0    0  )
        !            85: *>
        !            86: *>                    N-K-L  K   M-K  K+L-M
        !            87: *>   ( 0 R ) =     K ( 0    R11  R12  R13  )
        !            88: *>               M-K ( 0     0   R22  R23  )
        !            89: *>             K+L-M ( 0     0    0   R33  )
        !            90: *>
        !            91: *> where
        !            92: *>
        !            93: *>   C = diag( ALPHA(K+1), ... , ALPHA(M) ),
        !            94: *>   S = diag( BETA(K+1),  ... , BETA(M) ),
        !            95: *>   C**2 + S**2 = I.
        !            96: *>
        !            97: *>   (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
        !            98: *>   ( 0  R22 R23 )
        !            99: *>   in B(M-K+1:L,N+M-K-L+1:N) on exit.
        !           100: *>
        !           101: *> The routine computes C, S, R, and optionally the unitary
        !           102: *> transformation matrices U, V and Q.
        !           103: *>
        !           104: *> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
        !           105: *> A and B implicitly gives the SVD of A*inv(B):
        !           106: *>                      A*inv(B) = U*(D1*inv(D2))*V**H.
        !           107: *> If ( A**H,B**H)**H has orthonormal columns, then the GSVD of A and B is also
        !           108: *> equal to the CS decomposition of A and B. Furthermore, the GSVD can
        !           109: *> be used to derive the solution of the eigenvalue problem:
        !           110: *>                      A**H*A x = lambda* B**H*B x.
        !           111: *> In some literature, the GSVD of A and B is presented in the form
        !           112: *>                  U**H*A*X = ( 0 D1 ),   V**H*B*X = ( 0 D2 )
        !           113: *> where U and V are orthogonal and X is nonsingular, and D1 and D2 are
        !           114: *> ``diagonal''.  The former GSVD form can be converted to the latter
        !           115: *> form by taking the nonsingular matrix X as
        !           116: *>
        !           117: *>                       X = Q*(  I   0    )
        !           118: *>                             (  0 inv(R) )
        !           119: *> \endverbatim
        !           120: *
        !           121: *  Arguments:
        !           122: *  ==========
        !           123: *
        !           124: *> \param[in] JOBU
        !           125: *> \verbatim
        !           126: *>          JOBU is CHARACTER*1
        !           127: *>          = 'U':  Unitary matrix U is computed;
        !           128: *>          = 'N':  U is not computed.
        !           129: *> \endverbatim
        !           130: *>
        !           131: *> \param[in] JOBV
        !           132: *> \verbatim
        !           133: *>          JOBV is CHARACTER*1
        !           134: *>          = 'V':  Unitary matrix V is computed;
        !           135: *>          = 'N':  V is not computed.
        !           136: *> \endverbatim
        !           137: *>
        !           138: *> \param[in] JOBQ
        !           139: *> \verbatim
        !           140: *>          JOBQ is CHARACTER*1
        !           141: *>          = 'Q':  Unitary matrix Q is computed;
        !           142: *>          = 'N':  Q is not computed.
        !           143: *> \endverbatim
        !           144: *>
        !           145: *> \param[in] M
        !           146: *> \verbatim
        !           147: *>          M is INTEGER
        !           148: *>          The number of rows of the matrix A.  M >= 0.
        !           149: *> \endverbatim
        !           150: *>
        !           151: *> \param[in] N
        !           152: *> \verbatim
        !           153: *>          N is INTEGER
        !           154: *>          The number of columns of the matrices A and B.  N >= 0.
        !           155: *> \endverbatim
        !           156: *>
        !           157: *> \param[in] P
        !           158: *> \verbatim
        !           159: *>          P is INTEGER
        !           160: *>          The number of rows of the matrix B.  P >= 0.
        !           161: *> \endverbatim
        !           162: *>
        !           163: *> \param[out] K
        !           164: *> \verbatim
        !           165: *>          K is INTEGER
        !           166: *> \endverbatim
        !           167: *>
        !           168: *> \param[out] L
        !           169: *> \verbatim
        !           170: *>          L is INTEGER
        !           171: *>
        !           172: *>          On exit, K and L specify the dimension of the subblocks
        !           173: *>          described in Purpose.
        !           174: *>          K + L = effective numerical rank of (A**H,B**H)**H.
        !           175: *> \endverbatim
        !           176: *>
        !           177: *> \param[in,out] A
        !           178: *> \verbatim
        !           179: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !           180: *>          On entry, the M-by-N matrix A.
        !           181: *>          On exit, A contains the triangular matrix R, or part of R.
        !           182: *>          See Purpose for details.
        !           183: *> \endverbatim
        !           184: *>
        !           185: *> \param[in] LDA
        !           186: *> \verbatim
        !           187: *>          LDA is INTEGER
        !           188: *>          The leading dimension of the array A. LDA >= max(1,M).
        !           189: *> \endverbatim
        !           190: *>
        !           191: *> \param[in,out] B
        !           192: *> \verbatim
        !           193: *>          B is COMPLEX*16 array, dimension (LDB,N)
        !           194: *>          On entry, the P-by-N matrix B.
        !           195: *>          On exit, B contains part of the triangular matrix R if
        !           196: *>          M-K-L < 0.  See Purpose for details.
        !           197: *> \endverbatim
        !           198: *>
        !           199: *> \param[in] LDB
        !           200: *> \verbatim
        !           201: *>          LDB is INTEGER
        !           202: *>          The leading dimension of the array B. LDB >= max(1,P).
        !           203: *> \endverbatim
        !           204: *>
        !           205: *> \param[out] ALPHA
        !           206: *> \verbatim
        !           207: *>          ALPHA is DOUBLE PRECISION array, dimension (N)
        !           208: *> \endverbatim
        !           209: *>
        !           210: *> \param[out] BETA
        !           211: *> \verbatim
        !           212: *>          BETA is DOUBLE PRECISION array, dimension (N)
        !           213: *>
        !           214: *>          On exit, ALPHA and BETA contain the generalized singular
        !           215: *>          value pairs of A and B;
        !           216: *>            ALPHA(1:K) = 1,
        !           217: *>            BETA(1:K)  = 0,
        !           218: *>          and if M-K-L >= 0,
        !           219: *>            ALPHA(K+1:K+L) = C,
        !           220: *>            BETA(K+1:K+L)  = S,
        !           221: *>          or if M-K-L < 0,
        !           222: *>            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
        !           223: *>            BETA(K+1:M) =S, BETA(M+1:K+L) =1
        !           224: *>          and
        !           225: *>            ALPHA(K+L+1:N) = 0
        !           226: *>            BETA(K+L+1:N)  = 0
        !           227: *> \endverbatim
        !           228: *>
        !           229: *> \param[out] U
        !           230: *> \verbatim
        !           231: *>          U is COMPLEX*16 array, dimension (LDU,M)
        !           232: *>          If JOBU = 'U', U contains the M-by-M unitary matrix U.
        !           233: *>          If JOBU = 'N', U is not referenced.
        !           234: *> \endverbatim
        !           235: *>
        !           236: *> \param[in] LDU
        !           237: *> \verbatim
        !           238: *>          LDU is INTEGER
        !           239: *>          The leading dimension of the array U. LDU >= max(1,M) if
        !           240: *>          JOBU = 'U'; LDU >= 1 otherwise.
        !           241: *> \endverbatim
        !           242: *>
        !           243: *> \param[out] V
        !           244: *> \verbatim
        !           245: *>          V is COMPLEX*16 array, dimension (LDV,P)
        !           246: *>          If JOBV = 'V', V contains the P-by-P unitary matrix V.
        !           247: *>          If JOBV = 'N', V is not referenced.
        !           248: *> \endverbatim
        !           249: *>
        !           250: *> \param[in] LDV
        !           251: *> \verbatim
        !           252: *>          LDV is INTEGER
        !           253: *>          The leading dimension of the array V. LDV >= max(1,P) if
        !           254: *>          JOBV = 'V'; LDV >= 1 otherwise.
        !           255: *> \endverbatim
        !           256: *>
        !           257: *> \param[out] Q
        !           258: *> \verbatim
        !           259: *>          Q is COMPLEX*16 array, dimension (LDQ,N)
        !           260: *>          If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
        !           261: *>          If JOBQ = 'N', Q is not referenced.
        !           262: *> \endverbatim
        !           263: *>
        !           264: *> \param[in] LDQ
        !           265: *> \verbatim
        !           266: *>          LDQ is INTEGER
        !           267: *>          The leading dimension of the array Q. LDQ >= max(1,N) if
        !           268: *>          JOBQ = 'Q'; LDQ >= 1 otherwise.
        !           269: *> \endverbatim
        !           270: *>
        !           271: *> \param[out] WORK
        !           272: *> \verbatim
        !           273: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           274: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           275: *> \endverbatim
        !           276: *>
        !           277: *> \param[in] LWORK
        !           278: *> \verbatim
        !           279: *>          LWORK is INTEGER
        !           280: *>          The dimension of the array WORK.
        !           281: *>
        !           282: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           283: *>          only calculates the optimal size of the WORK array, returns
        !           284: *>          this value as the first entry of the WORK array, and no error
        !           285: *>          message related to LWORK is issued by XERBLA.
        !           286: *> \endverbatim
        !           287: *>
        !           288: *> \param[out] RWORK
        !           289: *> \verbatim
        !           290: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
        !           291: *> \endverbatim
        !           292: *>
        !           293: *> \param[out] IWORK
        !           294: *> \verbatim
        !           295: *>          IWORK is INTEGER array, dimension (N)
        !           296: *>          On exit, IWORK stores the sorting information. More
        !           297: *>          precisely, the following loop will sort ALPHA
        !           298: *>             for I = K+1, min(M,K+L)
        !           299: *>                 swap ALPHA(I) and ALPHA(IWORK(I))
        !           300: *>             endfor
        !           301: *>          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
        !           302: *> \endverbatim
        !           303: *>
        !           304: *> \param[out] INFO
        !           305: *> \verbatim
        !           306: *>          INFO is INTEGER
        !           307: *>          = 0:  successful exit.
        !           308: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           309: *>          > 0:  if INFO = 1, the Jacobi-type procedure failed to
        !           310: *>                converge.  For further details, see subroutine ZTGSJA.
        !           311: *> \endverbatim
        !           312: *
        !           313: *> \par Internal Parameters:
        !           314: *  =========================
        !           315: *>
        !           316: *> \verbatim
        !           317: *>  TOLA    DOUBLE PRECISION
        !           318: *>  TOLB    DOUBLE PRECISION
        !           319: *>          TOLA and TOLB are the thresholds to determine the effective
        !           320: *>          rank of (A**H,B**H)**H. Generally, they are set to
        !           321: *>                   TOLA = MAX(M,N)*norm(A)*MACHEPS,
        !           322: *>                   TOLB = MAX(P,N)*norm(B)*MACHEPS.
        !           323: *>          The size of TOLA and TOLB may affect the size of backward
        !           324: *>          errors of the decomposition.
        !           325: *> \endverbatim
        !           326: *
        !           327: *  Authors:
        !           328: *  ========
        !           329: *
        !           330: *> \author Univ. of Tennessee 
        !           331: *> \author Univ. of California Berkeley 
        !           332: *> \author Univ. of Colorado Denver 
        !           333: *> \author NAG Ltd. 
        !           334: *
        !           335: *> \date August 2015
        !           336: *
        !           337: *> \ingroup complex16OTHERsing
        !           338: *
        !           339: *> \par Contributors:
        !           340: *  ==================
        !           341: *>
        !           342: *>     Ming Gu and Huan Ren, Computer Science Division, University of
        !           343: *>     California at Berkeley, USA
        !           344: *>
        !           345: *
        !           346: *> \par Further Details:
        !           347: *  =====================
        !           348: *>
        !           349: *>  ZGGSVD3 replaces the deprecated subroutine ZGGSVD.
        !           350: *>
        !           351: *  =====================================================================
        !           352:       SUBROUTINE ZGGSVD3( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
        !           353:      $                    LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
        !           354:      $                    WORK, LWORK, RWORK, IWORK, INFO )
        !           355: *
        !           356: *  -- LAPACK driver routine (version 3.6.0) --
        !           357: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           358: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           359: *     August 2015
        !           360: *
        !           361: *     .. Scalar Arguments ..
        !           362:       CHARACTER          JOBQ, JOBU, JOBV
        !           363:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
        !           364:      $                   LWORK
        !           365: *     ..
        !           366: *     .. Array Arguments ..
        !           367:       INTEGER            IWORK( * )
        !           368:       DOUBLE PRECISION   ALPHA( * ), BETA( * ), RWORK( * )
        !           369:       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
        !           370:      $                   U( LDU, * ), V( LDV, * ), WORK( * )
        !           371: *     ..
        !           372: *
        !           373: *  =====================================================================
        !           374: *
        !           375: *     .. Local Scalars ..
        !           376:       LOGICAL            WANTQ, WANTU, WANTV, LQUERY
        !           377:       INTEGER            I, IBND, ISUB, J, NCYCLE, LWKOPT
        !           378:       DOUBLE PRECISION   ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
        !           379: *     ..
        !           380: *     .. External Functions ..
        !           381:       LOGICAL            LSAME
        !           382:       DOUBLE PRECISION   DLAMCH, ZLANGE
        !           383:       EXTERNAL           LSAME, DLAMCH, ZLANGE
        !           384: *     ..
        !           385: *     .. External Subroutines ..
        !           386:       EXTERNAL           DCOPY, XERBLA, ZGGSVP, ZTGSJA
        !           387: *     ..
        !           388: *     .. Intrinsic Functions ..
        !           389:       INTRINSIC          MAX, MIN
        !           390: *     ..
        !           391: *     .. Executable Statements ..
        !           392: *
        !           393: *     Decode and test the input parameters
        !           394: *
        !           395:       WANTU = LSAME( JOBU, 'U' )
        !           396:       WANTV = LSAME( JOBV, 'V' )
        !           397:       WANTQ = LSAME( JOBQ, 'Q' )
        !           398:       LQUERY = ( LWORK.EQ.-1 )
        !           399:       LWKOPT = 1
        !           400: *
        !           401: *     Test the input arguments
        !           402: *
        !           403:       INFO = 0
        !           404:       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
        !           405:          INFO = -1
        !           406:       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
        !           407:          INFO = -2
        !           408:       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
        !           409:          INFO = -3
        !           410:       ELSE IF( M.LT.0 ) THEN
        !           411:          INFO = -4
        !           412:       ELSE IF( N.LT.0 ) THEN
        !           413:          INFO = -5
        !           414:       ELSE IF( P.LT.0 ) THEN
        !           415:          INFO = -6
        !           416:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           417:          INFO = -10
        !           418:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
        !           419:          INFO = -12
        !           420:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
        !           421:          INFO = -16
        !           422:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
        !           423:          INFO = -18
        !           424:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
        !           425:          INFO = -20
        !           426:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
        !           427:          INFO = -24
        !           428:       END IF
        !           429: *
        !           430: *     Compute workspace
        !           431: *
        !           432:       IF( INFO.EQ.0 ) THEN
        !           433:          CALL ZGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
        !           434:      $                 TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK,
        !           435:      $                 WORK, WORK, -1, INFO )
        !           436:          LWKOPT = N + INT( WORK( 1 ) )
        !           437:          LWKOPT = MAX( 2*N, LWKOPT )
        !           438:          LWKOPT = MAX( 1, LWKOPT )
        !           439:          WORK( 1 ) = DCMPLX( LWKOPT )
        !           440:       END IF
        !           441: *
        !           442:       IF( INFO.NE.0 ) THEN
        !           443:          CALL XERBLA( 'ZGGSVD3', -INFO )
        !           444:          RETURN
        !           445:       END IF
        !           446:       IF( LQUERY ) THEN
        !           447:          RETURN
        !           448:       ENDIF
        !           449: *
        !           450: *     Compute the Frobenius norm of matrices A and B
        !           451: *
        !           452:       ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
        !           453:       BNORM = ZLANGE( '1', P, N, B, LDB, RWORK )
        !           454: *
        !           455: *     Get machine precision and set up threshold for determining
        !           456: *     the effective numerical rank of the matrices A and B.
        !           457: *
        !           458:       ULP = DLAMCH( 'Precision' )
        !           459:       UNFL = DLAMCH( 'Safe Minimum' )
        !           460:       TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP
        !           461:       TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP
        !           462: *
        !           463:       CALL ZGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
        !           464:      $              TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK,
        !           465:      $              WORK, WORK( N+1 ), LWORK-N, INFO )
        !           466: *
        !           467: *     Compute the GSVD of two upper "triangular" matrices
        !           468: *
        !           469:       CALL ZTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
        !           470:      $             TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
        !           471:      $             WORK, NCYCLE, INFO )
        !           472: *
        !           473: *     Sort the singular values and store the pivot indices in IWORK
        !           474: *     Copy ALPHA to RWORK, then sort ALPHA in RWORK
        !           475: *
        !           476:       CALL DCOPY( N, ALPHA, 1, RWORK, 1 )
        !           477:       IBND = MIN( L, M-K )
        !           478:       DO 20 I = 1, IBND
        !           479: *
        !           480: *        Scan for largest ALPHA(K+I)
        !           481: *
        !           482:          ISUB = I
        !           483:          SMAX = RWORK( K+I )
        !           484:          DO 10 J = I + 1, IBND
        !           485:             TEMP = RWORK( K+J )
        !           486:             IF( TEMP.GT.SMAX ) THEN
        !           487:                ISUB = J
        !           488:                SMAX = TEMP
        !           489:             END IF
        !           490:    10    CONTINUE
        !           491:          IF( ISUB.NE.I ) THEN
        !           492:             RWORK( K+ISUB ) = RWORK( K+I )
        !           493:             RWORK( K+I ) = SMAX
        !           494:             IWORK( K+I ) = K + ISUB
        !           495:          ELSE
        !           496:             IWORK( K+I ) = K + I
        !           497:          END IF
        !           498:    20 CONTINUE
        !           499: *
        !           500:       WORK( 1 ) = DCMPLX( LWKOPT )
        !           501:       RETURN
        !           502: *
        !           503: *     End of ZGGSVD3
        !           504: *
        !           505:       END

CVSweb interface <joel.bertrand@systella.fr>