Annotation of rpl/lapack/lapack/zggsvd.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE ZGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
                      2:      $                   LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
                      3:      $                   RWORK, IWORK, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBQ, JOBU, JOBV
                     12:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
                     13: *     ..
                     14: *     .. Array Arguments ..
                     15:       INTEGER            IWORK( * )
                     16:       DOUBLE PRECISION   ALPHA( * ), BETA( * ), RWORK( * )
                     17:       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                     18:      $                   U( LDU, * ), V( LDV, * ), WORK( * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  ZGGSVD computes the generalized singular value decomposition (GSVD)
                     25: *  of an M-by-N complex matrix A and P-by-N complex matrix B:
                     26: *
                     27: *        U'*A*Q = D1*( 0 R ),    V'*B*Q = D2*( 0 R )
                     28: *
                     29: *  where U, V and Q are unitary matrices, and Z' means the conjugate
                     30: *  transpose of Z.  Let K+L = the effective numerical rank of the
                     31: *  matrix (A',B')', then R is a (K+L)-by-(K+L) nonsingular upper
                     32: *  triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
                     33: *  matrices and of the following structures, respectively:
                     34: *
                     35: *  If M-K-L >= 0,
                     36: *
                     37: *                      K  L
                     38: *         D1 =     K ( I  0 )
                     39: *                  L ( 0  C )
                     40: *              M-K-L ( 0  0 )
                     41: *
                     42: *                    K  L
                     43: *         D2 =   L ( 0  S )
                     44: *              P-L ( 0  0 )
                     45: *
                     46: *                  N-K-L  K    L
                     47: *    ( 0 R ) = K (  0   R11  R12 )
                     48: *              L (  0    0   R22 )
                     49: *  where
                     50: *
                     51: *    C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
                     52: *    S = diag( BETA(K+1),  ... , BETA(K+L) ),
                     53: *    C**2 + S**2 = I.
                     54: *
                     55: *    R is stored in A(1:K+L,N-K-L+1:N) on exit.
                     56: *
                     57: *  If M-K-L < 0,
                     58: *
                     59: *                    K M-K K+L-M
                     60: *         D1 =   K ( I  0    0   )
                     61: *              M-K ( 0  C    0   )
                     62: *
                     63: *                      K M-K K+L-M
                     64: *         D2 =   M-K ( 0  S    0  )
                     65: *              K+L-M ( 0  0    I  )
                     66: *                P-L ( 0  0    0  )
                     67: *
                     68: *                     N-K-L  K   M-K  K+L-M
                     69: *    ( 0 R ) =     K ( 0    R11  R12  R13  )
                     70: *                M-K ( 0     0   R22  R23  )
                     71: *              K+L-M ( 0     0    0   R33  )
                     72: *
                     73: *  where
                     74: *
                     75: *    C = diag( ALPHA(K+1), ... , ALPHA(M) ),
                     76: *    S = diag( BETA(K+1),  ... , BETA(M) ),
                     77: *    C**2 + S**2 = I.
                     78: *
                     79: *    (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
                     80: *    ( 0  R22 R23 )
                     81: *    in B(M-K+1:L,N+M-K-L+1:N) on exit.
                     82: *
                     83: *  The routine computes C, S, R, and optionally the unitary
                     84: *  transformation matrices U, V and Q.
                     85: *
                     86: *  In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
                     87: *  A and B implicitly gives the SVD of A*inv(B):
                     88: *                       A*inv(B) = U*(D1*inv(D2))*V'.
                     89: *  If ( A',B')' has orthnormal columns, then the GSVD of A and B is also
                     90: *  equal to the CS decomposition of A and B. Furthermore, the GSVD can
                     91: *  be used to derive the solution of the eigenvalue problem:
                     92: *                       A'*A x = lambda* B'*B x.
                     93: *  In some literature, the GSVD of A and B is presented in the form
                     94: *                   U'*A*X = ( 0 D1 ),   V'*B*X = ( 0 D2 )
                     95: *  where U and V are orthogonal and X is nonsingular, and D1 and D2 are
                     96: *  ``diagonal''.  The former GSVD form can be converted to the latter
                     97: *  form by taking the nonsingular matrix X as
                     98: *
                     99: *                        X = Q*(  I   0    )
                    100: *                              (  0 inv(R) )
                    101: *
                    102: *  Arguments
                    103: *  =========
                    104: *
                    105: *  JOBU    (input) CHARACTER*1
                    106: *          = 'U':  Unitary matrix U is computed;
                    107: *          = 'N':  U is not computed.
                    108: *
                    109: *  JOBV    (input) CHARACTER*1
                    110: *          = 'V':  Unitary matrix V is computed;
                    111: *          = 'N':  V is not computed.
                    112: *
                    113: *  JOBQ    (input) CHARACTER*1
                    114: *          = 'Q':  Unitary matrix Q is computed;
                    115: *          = 'N':  Q is not computed.
                    116: *
                    117: *  M       (input) INTEGER
                    118: *          The number of rows of the matrix A.  M >= 0.
                    119: *
                    120: *  N       (input) INTEGER
                    121: *          The number of columns of the matrices A and B.  N >= 0.
                    122: *
                    123: *  P       (input) INTEGER
                    124: *          The number of rows of the matrix B.  P >= 0.
                    125: *
                    126: *  K       (output) INTEGER
                    127: *  L       (output) INTEGER
                    128: *          On exit, K and L specify the dimension of the subblocks
                    129: *          described in Purpose.
                    130: *          K + L = effective numerical rank of (A',B')'.
                    131: *
                    132: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                    133: *          On entry, the M-by-N matrix A.
                    134: *          On exit, A contains the triangular matrix R, or part of R.
                    135: *          See Purpose for details.
                    136: *
                    137: *  LDA     (input) INTEGER
                    138: *          The leading dimension of the array A. LDA >= max(1,M).
                    139: *
                    140: *  B       (input/output) COMPLEX*16 array, dimension (LDB,N)
                    141: *          On entry, the P-by-N matrix B.
                    142: *          On exit, B contains part of the triangular matrix R if
                    143: *          M-K-L < 0.  See Purpose for details.
                    144: *
                    145: *  LDB     (input) INTEGER
                    146: *          The leading dimension of the array B. LDB >= max(1,P).
                    147: *
                    148: *  ALPHA   (output) DOUBLE PRECISION array, dimension (N)
                    149: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
                    150: *          On exit, ALPHA and BETA contain the generalized singular
                    151: *          value pairs of A and B;
                    152: *            ALPHA(1:K) = 1,
                    153: *            BETA(1:K)  = 0,
                    154: *          and if M-K-L >= 0,
                    155: *            ALPHA(K+1:K+L) = C,
                    156: *            BETA(K+1:K+L)  = S,
                    157: *          or if M-K-L < 0,
                    158: *            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
                    159: *            BETA(K+1:M) = S, BETA(M+1:K+L) = 1
                    160: *          and
                    161: *            ALPHA(K+L+1:N) = 0
                    162: *            BETA(K+L+1:N)  = 0
                    163: *
                    164: *  U       (output) COMPLEX*16 array, dimension (LDU,M)
                    165: *          If JOBU = 'U', U contains the M-by-M unitary matrix U.
                    166: *          If JOBU = 'N', U is not referenced.
                    167: *
                    168: *  LDU     (input) INTEGER
                    169: *          The leading dimension of the array U. LDU >= max(1,M) if
                    170: *          JOBU = 'U'; LDU >= 1 otherwise.
                    171: *
                    172: *  V       (output) COMPLEX*16 array, dimension (LDV,P)
                    173: *          If JOBV = 'V', V contains the P-by-P unitary matrix V.
                    174: *          If JOBV = 'N', V is not referenced.
                    175: *
                    176: *  LDV     (input) INTEGER
                    177: *          The leading dimension of the array V. LDV >= max(1,P) if
                    178: *          JOBV = 'V'; LDV >= 1 otherwise.
                    179: *
                    180: *  Q       (output) COMPLEX*16 array, dimension (LDQ,N)
                    181: *          If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
                    182: *          If JOBQ = 'N', Q is not referenced.
                    183: *
                    184: *  LDQ     (input) INTEGER
                    185: *          The leading dimension of the array Q. LDQ >= max(1,N) if
                    186: *          JOBQ = 'Q'; LDQ >= 1 otherwise.
                    187: *
                    188: *  WORK    (workspace) COMPLEX*16 array, dimension (max(3*N,M,P)+N)
                    189: *
                    190: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
                    191: *
                    192: *  IWORK   (workspace/output) INTEGER array, dimension (N)
                    193: *          On exit, IWORK stores the sorting information. More
                    194: *          precisely, the following loop will sort ALPHA
                    195: *             for I = K+1, min(M,K+L)
                    196: *                 swap ALPHA(I) and ALPHA(IWORK(I))
                    197: *             endfor
                    198: *          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
                    199: *
                    200: *  INFO    (output) INTEGER
                    201: *          = 0:  successful exit.
                    202: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    203: *          > 0:  if INFO = 1, the Jacobi-type procedure failed to
                    204: *                converge.  For further details, see subroutine ZTGSJA.
                    205: *
                    206: *  Internal Parameters
                    207: *  ===================
                    208: *
                    209: *  TOLA    DOUBLE PRECISION
                    210: *  TOLB    DOUBLE PRECISION
                    211: *          TOLA and TOLB are the thresholds to determine the effective
                    212: *          rank of (A',B')'. Generally, they are set to
                    213: *                   TOLA = MAX(M,N)*norm(A)*MAZHEPS,
                    214: *                   TOLB = MAX(P,N)*norm(B)*MAZHEPS.
                    215: *          The size of TOLA and TOLB may affect the size of backward
                    216: *          errors of the decomposition.
                    217: *
                    218: *  Further Details
                    219: *  ===============
                    220: *
                    221: *  2-96 Based on modifications by
                    222: *     Ming Gu and Huan Ren, Computer Science Division, University of
                    223: *     California at Berkeley, USA
                    224: *
                    225: *  =====================================================================
                    226: *
                    227: *     .. Local Scalars ..
                    228:       LOGICAL            WANTQ, WANTU, WANTV
                    229:       INTEGER            I, IBND, ISUB, J, NCYCLE
                    230:       DOUBLE PRECISION   ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
                    231: *     ..
                    232: *     .. External Functions ..
                    233:       LOGICAL            LSAME
                    234:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    235:       EXTERNAL           LSAME, DLAMCH, ZLANGE
                    236: *     ..
                    237: *     .. External Subroutines ..
                    238:       EXTERNAL           DCOPY, XERBLA, ZGGSVP, ZTGSJA
                    239: *     ..
                    240: *     .. Intrinsic Functions ..
                    241:       INTRINSIC          MAX, MIN
                    242: *     ..
                    243: *     .. Executable Statements ..
                    244: *
                    245: *     Decode and test the input parameters
                    246: *
                    247:       WANTU = LSAME( JOBU, 'U' )
                    248:       WANTV = LSAME( JOBV, 'V' )
                    249:       WANTQ = LSAME( JOBQ, 'Q' )
                    250: *
                    251:       INFO = 0
                    252:       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
                    253:          INFO = -1
                    254:       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
                    255:          INFO = -2
                    256:       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
                    257:          INFO = -3
                    258:       ELSE IF( M.LT.0 ) THEN
                    259:          INFO = -4
                    260:       ELSE IF( N.LT.0 ) THEN
                    261:          INFO = -5
                    262:       ELSE IF( P.LT.0 ) THEN
                    263:          INFO = -6
                    264:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    265:          INFO = -10
                    266:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
                    267:          INFO = -12
                    268:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
                    269:          INFO = -16
                    270:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
                    271:          INFO = -18
                    272:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
                    273:          INFO = -20
                    274:       END IF
                    275:       IF( INFO.NE.0 ) THEN
                    276:          CALL XERBLA( 'ZGGSVD', -INFO )
                    277:          RETURN
                    278:       END IF
                    279: *
                    280: *     Compute the Frobenius norm of matrices A and B
                    281: *
                    282:       ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
                    283:       BNORM = ZLANGE( '1', P, N, B, LDB, RWORK )
                    284: *
                    285: *     Get machine precision and set up threshold for determining
                    286: *     the effective numerical rank of the matrices A and B.
                    287: *
                    288:       ULP = DLAMCH( 'Precision' )
                    289:       UNFL = DLAMCH( 'Safe Minimum' )
                    290:       TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP
                    291:       TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP
                    292: *
                    293:       CALL ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
                    294:      $             TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK,
                    295:      $             WORK, WORK( N+1 ), INFO )
                    296: *
                    297: *     Compute the GSVD of two upper "triangular" matrices
                    298: *
                    299:       CALL ZTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
                    300:      $             TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
                    301:      $             WORK, NCYCLE, INFO )
                    302: *
                    303: *     Sort the singular values and store the pivot indices in IWORK
                    304: *     Copy ALPHA to RWORK, then sort ALPHA in RWORK
                    305: *
                    306:       CALL DCOPY( N, ALPHA, 1, RWORK, 1 )
                    307:       IBND = MIN( L, M-K )
                    308:       DO 20 I = 1, IBND
                    309: *
                    310: *        Scan for largest ALPHA(K+I)
                    311: *
                    312:          ISUB = I
                    313:          SMAX = RWORK( K+I )
                    314:          DO 10 J = I + 1, IBND
                    315:             TEMP = RWORK( K+J )
                    316:             IF( TEMP.GT.SMAX ) THEN
                    317:                ISUB = J
                    318:                SMAX = TEMP
                    319:             END IF
                    320:    10    CONTINUE
                    321:          IF( ISUB.NE.I ) THEN
                    322:             RWORK( K+ISUB ) = RWORK( K+I )
                    323:             RWORK( K+I ) = SMAX
                    324:             IWORK( K+I ) = K + ISUB
                    325:          ELSE
                    326:             IWORK( K+I ) = K + I
                    327:          END IF
                    328:    20 CONTINUE
                    329: *
                    330:       RETURN
                    331: *
                    332: *     End of ZGGSVD
                    333: *
                    334:       END

CVSweb interface <joel.bertrand@systella.fr>