Annotation of rpl/lapack/lapack/zggsvd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
        !             2:      $                   LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
        !             3:      $                   RWORK, IWORK, INFO )
        !             4: *
        !             5: *  -- LAPACK driver routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          JOBQ, JOBU, JOBV
        !            12:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
        !            13: *     ..
        !            14: *     .. Array Arguments ..
        !            15:       INTEGER            IWORK( * )
        !            16:       DOUBLE PRECISION   ALPHA( * ), BETA( * ), RWORK( * )
        !            17:       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
        !            18:      $                   U( LDU, * ), V( LDV, * ), WORK( * )
        !            19: *     ..
        !            20: *
        !            21: *  Purpose
        !            22: *  =======
        !            23: *
        !            24: *  ZGGSVD computes the generalized singular value decomposition (GSVD)
        !            25: *  of an M-by-N complex matrix A and P-by-N complex matrix B:
        !            26: *
        !            27: *        U'*A*Q = D1*( 0 R ),    V'*B*Q = D2*( 0 R )
        !            28: *
        !            29: *  where U, V and Q are unitary matrices, and Z' means the conjugate
        !            30: *  transpose of Z.  Let K+L = the effective numerical rank of the
        !            31: *  matrix (A',B')', then R is a (K+L)-by-(K+L) nonsingular upper
        !            32: *  triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
        !            33: *  matrices and of the following structures, respectively:
        !            34: *
        !            35: *  If M-K-L >= 0,
        !            36: *
        !            37: *                      K  L
        !            38: *         D1 =     K ( I  0 )
        !            39: *                  L ( 0  C )
        !            40: *              M-K-L ( 0  0 )
        !            41: *
        !            42: *                    K  L
        !            43: *         D2 =   L ( 0  S )
        !            44: *              P-L ( 0  0 )
        !            45: *
        !            46: *                  N-K-L  K    L
        !            47: *    ( 0 R ) = K (  0   R11  R12 )
        !            48: *              L (  0    0   R22 )
        !            49: *  where
        !            50: *
        !            51: *    C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
        !            52: *    S = diag( BETA(K+1),  ... , BETA(K+L) ),
        !            53: *    C**2 + S**2 = I.
        !            54: *
        !            55: *    R is stored in A(1:K+L,N-K-L+1:N) on exit.
        !            56: *
        !            57: *  If M-K-L < 0,
        !            58: *
        !            59: *                    K M-K K+L-M
        !            60: *         D1 =   K ( I  0    0   )
        !            61: *              M-K ( 0  C    0   )
        !            62: *
        !            63: *                      K M-K K+L-M
        !            64: *         D2 =   M-K ( 0  S    0  )
        !            65: *              K+L-M ( 0  0    I  )
        !            66: *                P-L ( 0  0    0  )
        !            67: *
        !            68: *                     N-K-L  K   M-K  K+L-M
        !            69: *    ( 0 R ) =     K ( 0    R11  R12  R13  )
        !            70: *                M-K ( 0     0   R22  R23  )
        !            71: *              K+L-M ( 0     0    0   R33  )
        !            72: *
        !            73: *  where
        !            74: *
        !            75: *    C = diag( ALPHA(K+1), ... , ALPHA(M) ),
        !            76: *    S = diag( BETA(K+1),  ... , BETA(M) ),
        !            77: *    C**2 + S**2 = I.
        !            78: *
        !            79: *    (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
        !            80: *    ( 0  R22 R23 )
        !            81: *    in B(M-K+1:L,N+M-K-L+1:N) on exit.
        !            82: *
        !            83: *  The routine computes C, S, R, and optionally the unitary
        !            84: *  transformation matrices U, V and Q.
        !            85: *
        !            86: *  In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
        !            87: *  A and B implicitly gives the SVD of A*inv(B):
        !            88: *                       A*inv(B) = U*(D1*inv(D2))*V'.
        !            89: *  If ( A',B')' has orthnormal columns, then the GSVD of A and B is also
        !            90: *  equal to the CS decomposition of A and B. Furthermore, the GSVD can
        !            91: *  be used to derive the solution of the eigenvalue problem:
        !            92: *                       A'*A x = lambda* B'*B x.
        !            93: *  In some literature, the GSVD of A and B is presented in the form
        !            94: *                   U'*A*X = ( 0 D1 ),   V'*B*X = ( 0 D2 )
        !            95: *  where U and V are orthogonal and X is nonsingular, and D1 and D2 are
        !            96: *  ``diagonal''.  The former GSVD form can be converted to the latter
        !            97: *  form by taking the nonsingular matrix X as
        !            98: *
        !            99: *                        X = Q*(  I   0    )
        !           100: *                              (  0 inv(R) )
        !           101: *
        !           102: *  Arguments
        !           103: *  =========
        !           104: *
        !           105: *  JOBU    (input) CHARACTER*1
        !           106: *          = 'U':  Unitary matrix U is computed;
        !           107: *          = 'N':  U is not computed.
        !           108: *
        !           109: *  JOBV    (input) CHARACTER*1
        !           110: *          = 'V':  Unitary matrix V is computed;
        !           111: *          = 'N':  V is not computed.
        !           112: *
        !           113: *  JOBQ    (input) CHARACTER*1
        !           114: *          = 'Q':  Unitary matrix Q is computed;
        !           115: *          = 'N':  Q is not computed.
        !           116: *
        !           117: *  M       (input) INTEGER
        !           118: *          The number of rows of the matrix A.  M >= 0.
        !           119: *
        !           120: *  N       (input) INTEGER
        !           121: *          The number of columns of the matrices A and B.  N >= 0.
        !           122: *
        !           123: *  P       (input) INTEGER
        !           124: *          The number of rows of the matrix B.  P >= 0.
        !           125: *
        !           126: *  K       (output) INTEGER
        !           127: *  L       (output) INTEGER
        !           128: *          On exit, K and L specify the dimension of the subblocks
        !           129: *          described in Purpose.
        !           130: *          K + L = effective numerical rank of (A',B')'.
        !           131: *
        !           132: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !           133: *          On entry, the M-by-N matrix A.
        !           134: *          On exit, A contains the triangular matrix R, or part of R.
        !           135: *          See Purpose for details.
        !           136: *
        !           137: *  LDA     (input) INTEGER
        !           138: *          The leading dimension of the array A. LDA >= max(1,M).
        !           139: *
        !           140: *  B       (input/output) COMPLEX*16 array, dimension (LDB,N)
        !           141: *          On entry, the P-by-N matrix B.
        !           142: *          On exit, B contains part of the triangular matrix R if
        !           143: *          M-K-L < 0.  See Purpose for details.
        !           144: *
        !           145: *  LDB     (input) INTEGER
        !           146: *          The leading dimension of the array B. LDB >= max(1,P).
        !           147: *
        !           148: *  ALPHA   (output) DOUBLE PRECISION array, dimension (N)
        !           149: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
        !           150: *          On exit, ALPHA and BETA contain the generalized singular
        !           151: *          value pairs of A and B;
        !           152: *            ALPHA(1:K) = 1,
        !           153: *            BETA(1:K)  = 0,
        !           154: *          and if M-K-L >= 0,
        !           155: *            ALPHA(K+1:K+L) = C,
        !           156: *            BETA(K+1:K+L)  = S,
        !           157: *          or if M-K-L < 0,
        !           158: *            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
        !           159: *            BETA(K+1:M) = S, BETA(M+1:K+L) = 1
        !           160: *          and
        !           161: *            ALPHA(K+L+1:N) = 0
        !           162: *            BETA(K+L+1:N)  = 0
        !           163: *
        !           164: *  U       (output) COMPLEX*16 array, dimension (LDU,M)
        !           165: *          If JOBU = 'U', U contains the M-by-M unitary matrix U.
        !           166: *          If JOBU = 'N', U is not referenced.
        !           167: *
        !           168: *  LDU     (input) INTEGER
        !           169: *          The leading dimension of the array U. LDU >= max(1,M) if
        !           170: *          JOBU = 'U'; LDU >= 1 otherwise.
        !           171: *
        !           172: *  V       (output) COMPLEX*16 array, dimension (LDV,P)
        !           173: *          If JOBV = 'V', V contains the P-by-P unitary matrix V.
        !           174: *          If JOBV = 'N', V is not referenced.
        !           175: *
        !           176: *  LDV     (input) INTEGER
        !           177: *          The leading dimension of the array V. LDV >= max(1,P) if
        !           178: *          JOBV = 'V'; LDV >= 1 otherwise.
        !           179: *
        !           180: *  Q       (output) COMPLEX*16 array, dimension (LDQ,N)
        !           181: *          If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
        !           182: *          If JOBQ = 'N', Q is not referenced.
        !           183: *
        !           184: *  LDQ     (input) INTEGER
        !           185: *          The leading dimension of the array Q. LDQ >= max(1,N) if
        !           186: *          JOBQ = 'Q'; LDQ >= 1 otherwise.
        !           187: *
        !           188: *  WORK    (workspace) COMPLEX*16 array, dimension (max(3*N,M,P)+N)
        !           189: *
        !           190: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
        !           191: *
        !           192: *  IWORK   (workspace/output) INTEGER array, dimension (N)
        !           193: *          On exit, IWORK stores the sorting information. More
        !           194: *          precisely, the following loop will sort ALPHA
        !           195: *             for I = K+1, min(M,K+L)
        !           196: *                 swap ALPHA(I) and ALPHA(IWORK(I))
        !           197: *             endfor
        !           198: *          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
        !           199: *
        !           200: *  INFO    (output) INTEGER
        !           201: *          = 0:  successful exit.
        !           202: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           203: *          > 0:  if INFO = 1, the Jacobi-type procedure failed to
        !           204: *                converge.  For further details, see subroutine ZTGSJA.
        !           205: *
        !           206: *  Internal Parameters
        !           207: *  ===================
        !           208: *
        !           209: *  TOLA    DOUBLE PRECISION
        !           210: *  TOLB    DOUBLE PRECISION
        !           211: *          TOLA and TOLB are the thresholds to determine the effective
        !           212: *          rank of (A',B')'. Generally, they are set to
        !           213: *                   TOLA = MAX(M,N)*norm(A)*MAZHEPS,
        !           214: *                   TOLB = MAX(P,N)*norm(B)*MAZHEPS.
        !           215: *          The size of TOLA and TOLB may affect the size of backward
        !           216: *          errors of the decomposition.
        !           217: *
        !           218: *  Further Details
        !           219: *  ===============
        !           220: *
        !           221: *  2-96 Based on modifications by
        !           222: *     Ming Gu and Huan Ren, Computer Science Division, University of
        !           223: *     California at Berkeley, USA
        !           224: *
        !           225: *  =====================================================================
        !           226: *
        !           227: *     .. Local Scalars ..
        !           228:       LOGICAL            WANTQ, WANTU, WANTV
        !           229:       INTEGER            I, IBND, ISUB, J, NCYCLE
        !           230:       DOUBLE PRECISION   ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
        !           231: *     ..
        !           232: *     .. External Functions ..
        !           233:       LOGICAL            LSAME
        !           234:       DOUBLE PRECISION   DLAMCH, ZLANGE
        !           235:       EXTERNAL           LSAME, DLAMCH, ZLANGE
        !           236: *     ..
        !           237: *     .. External Subroutines ..
        !           238:       EXTERNAL           DCOPY, XERBLA, ZGGSVP, ZTGSJA
        !           239: *     ..
        !           240: *     .. Intrinsic Functions ..
        !           241:       INTRINSIC          MAX, MIN
        !           242: *     ..
        !           243: *     .. Executable Statements ..
        !           244: *
        !           245: *     Decode and test the input parameters
        !           246: *
        !           247:       WANTU = LSAME( JOBU, 'U' )
        !           248:       WANTV = LSAME( JOBV, 'V' )
        !           249:       WANTQ = LSAME( JOBQ, 'Q' )
        !           250: *
        !           251:       INFO = 0
        !           252:       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
        !           253:          INFO = -1
        !           254:       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
        !           255:          INFO = -2
        !           256:       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
        !           257:          INFO = -3
        !           258:       ELSE IF( M.LT.0 ) THEN
        !           259:          INFO = -4
        !           260:       ELSE IF( N.LT.0 ) THEN
        !           261:          INFO = -5
        !           262:       ELSE IF( P.LT.0 ) THEN
        !           263:          INFO = -6
        !           264:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           265:          INFO = -10
        !           266:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
        !           267:          INFO = -12
        !           268:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
        !           269:          INFO = -16
        !           270:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
        !           271:          INFO = -18
        !           272:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
        !           273:          INFO = -20
        !           274:       END IF
        !           275:       IF( INFO.NE.0 ) THEN
        !           276:          CALL XERBLA( 'ZGGSVD', -INFO )
        !           277:          RETURN
        !           278:       END IF
        !           279: *
        !           280: *     Compute the Frobenius norm of matrices A and B
        !           281: *
        !           282:       ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
        !           283:       BNORM = ZLANGE( '1', P, N, B, LDB, RWORK )
        !           284: *
        !           285: *     Get machine precision and set up threshold for determining
        !           286: *     the effective numerical rank of the matrices A and B.
        !           287: *
        !           288:       ULP = DLAMCH( 'Precision' )
        !           289:       UNFL = DLAMCH( 'Safe Minimum' )
        !           290:       TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP
        !           291:       TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP
        !           292: *
        !           293:       CALL ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
        !           294:      $             TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK,
        !           295:      $             WORK, WORK( N+1 ), INFO )
        !           296: *
        !           297: *     Compute the GSVD of two upper "triangular" matrices
        !           298: *
        !           299:       CALL ZTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
        !           300:      $             TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
        !           301:      $             WORK, NCYCLE, INFO )
        !           302: *
        !           303: *     Sort the singular values and store the pivot indices in IWORK
        !           304: *     Copy ALPHA to RWORK, then sort ALPHA in RWORK
        !           305: *
        !           306:       CALL DCOPY( N, ALPHA, 1, RWORK, 1 )
        !           307:       IBND = MIN( L, M-K )
        !           308:       DO 20 I = 1, IBND
        !           309: *
        !           310: *        Scan for largest ALPHA(K+I)
        !           311: *
        !           312:          ISUB = I
        !           313:          SMAX = RWORK( K+I )
        !           314:          DO 10 J = I + 1, IBND
        !           315:             TEMP = RWORK( K+J )
        !           316:             IF( TEMP.GT.SMAX ) THEN
        !           317:                ISUB = J
        !           318:                SMAX = TEMP
        !           319:             END IF
        !           320:    10    CONTINUE
        !           321:          IF( ISUB.NE.I ) THEN
        !           322:             RWORK( K+ISUB ) = RWORK( K+I )
        !           323:             RWORK( K+I ) = SMAX
        !           324:             IWORK( K+I ) = K + ISUB
        !           325:          ELSE
        !           326:             IWORK( K+I ) = K + I
        !           327:          END IF
        !           328:    20 CONTINUE
        !           329: *
        !           330:       RETURN
        !           331: *
        !           332: *     End of ZGGSVD
        !           333: *
        !           334:       END

CVSweb interface <joel.bertrand@systella.fr>