File:  [local] / rpl / lapack / lapack / zggqrf.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:21 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZGGQRF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGGQRF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggqrf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggqrf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggqrf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
   22: *                          LWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
   29: *      $                   WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZGGQRF computes a generalized QR factorization of an N-by-M matrix A
   39: *> and an N-by-P matrix B:
   40: *>
   41: *>             A = Q*R,        B = Q*T*Z,
   42: *>
   43: *> where Q is an N-by-N unitary matrix, Z is a P-by-P unitary matrix,
   44: *> and R and T assume one of the forms:
   45: *>
   46: *> if N >= M,  R = ( R11 ) M  ,   or if N < M,  R = ( R11  R12 ) N,
   47: *>                 (  0  ) N-M                         N   M-N
   48: *>                    M
   49: *>
   50: *> where R11 is upper triangular, and
   51: *>
   52: *> if N <= P,  T = ( 0  T12 ) N,   or if N > P,  T = ( T11 ) N-P,
   53: *>                  P-N  N                           ( T21 ) P
   54: *>                                                      P
   55: *>
   56: *> where T12 or T21 is upper triangular.
   57: *>
   58: *> In particular, if B is square and nonsingular, the GQR factorization
   59: *> of A and B implicitly gives the QR factorization of inv(B)*A:
   60: *>
   61: *>              inv(B)*A = Z**H * (inv(T)*R)
   62: *>
   63: *> where inv(B) denotes the inverse of the matrix B, and Z**H denotes the
   64: *> conjugate transpose of matrix Z.
   65: *> \endverbatim
   66: *
   67: *  Arguments:
   68: *  ==========
   69: *
   70: *> \param[in] N
   71: *> \verbatim
   72: *>          N is INTEGER
   73: *>          The number of rows of the matrices A and B. N >= 0.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] M
   77: *> \verbatim
   78: *>          M is INTEGER
   79: *>          The number of columns of the matrix A.  M >= 0.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] P
   83: *> \verbatim
   84: *>          P is INTEGER
   85: *>          The number of columns of the matrix B.  P >= 0.
   86: *> \endverbatim
   87: *>
   88: *> \param[in,out] A
   89: *> \verbatim
   90: *>          A is COMPLEX*16 array, dimension (LDA,M)
   91: *>          On entry, the N-by-M matrix A.
   92: *>          On exit, the elements on and above the diagonal of the array
   93: *>          contain the min(N,M)-by-M upper trapezoidal matrix R (R is
   94: *>          upper triangular if N >= M); the elements below the diagonal,
   95: *>          with the array TAUA, represent the unitary matrix Q as a
   96: *>          product of min(N,M) elementary reflectors (see Further
   97: *>          Details).
   98: *> \endverbatim
   99: *>
  100: *> \param[in] LDA
  101: *> \verbatim
  102: *>          LDA is INTEGER
  103: *>          The leading dimension of the array A. LDA >= max(1,N).
  104: *> \endverbatim
  105: *>
  106: *> \param[out] TAUA
  107: *> \verbatim
  108: *>          TAUA is COMPLEX*16 array, dimension (min(N,M))
  109: *>          The scalar factors of the elementary reflectors which
  110: *>          represent the unitary matrix Q (see Further Details).
  111: *> \endverbatim
  112: *>
  113: *> \param[in,out] B
  114: *> \verbatim
  115: *>          B is COMPLEX*16 array, dimension (LDB,P)
  116: *>          On entry, the N-by-P matrix B.
  117: *>          On exit, if N <= P, the upper triangle of the subarray
  118: *>          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
  119: *>          if N > P, the elements on and above the (N-P)-th subdiagonal
  120: *>          contain the N-by-P upper trapezoidal matrix T; the remaining
  121: *>          elements, with the array TAUB, represent the unitary
  122: *>          matrix Z as a product of elementary reflectors (see Further
  123: *>          Details).
  124: *> \endverbatim
  125: *>
  126: *> \param[in] LDB
  127: *> \verbatim
  128: *>          LDB is INTEGER
  129: *>          The leading dimension of the array B. LDB >= max(1,N).
  130: *> \endverbatim
  131: *>
  132: *> \param[out] TAUB
  133: *> \verbatim
  134: *>          TAUB is COMPLEX*16 array, dimension (min(N,P))
  135: *>          The scalar factors of the elementary reflectors which
  136: *>          represent the unitary matrix Z (see Further Details).
  137: *> \endverbatim
  138: *>
  139: *> \param[out] WORK
  140: *> \verbatim
  141: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  142: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] LWORK
  146: *> \verbatim
  147: *>          LWORK is INTEGER
  148: *>          The dimension of the array WORK. LWORK >= max(1,N,M,P).
  149: *>          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
  150: *>          where NB1 is the optimal blocksize for the QR factorization
  151: *>          of an N-by-M matrix, NB2 is the optimal blocksize for the
  152: *>          RQ factorization of an N-by-P matrix, and NB3 is the optimal
  153: *>          blocksize for a call of ZUNMQR.
  154: *>
  155: *>          If LWORK = -1, then a workspace query is assumed; the routine
  156: *>          only calculates the optimal size of the WORK array, returns
  157: *>          this value as the first entry of the WORK array, and no error
  158: *>          message related to LWORK is issued by XERBLA.
  159: *> \endverbatim
  160: *>
  161: *> \param[out] INFO
  162: *> \verbatim
  163: *>          INFO is INTEGER
  164: *>           = 0:  successful exit
  165: *>           < 0:  if INFO = -i, the i-th argument had an illegal value.
  166: *> \endverbatim
  167: *
  168: *  Authors:
  169: *  ========
  170: *
  171: *> \author Univ. of Tennessee
  172: *> \author Univ. of California Berkeley
  173: *> \author Univ. of Colorado Denver
  174: *> \author NAG Ltd.
  175: *
  176: *> \ingroup complex16OTHERcomputational
  177: *
  178: *> \par Further Details:
  179: *  =====================
  180: *>
  181: *> \verbatim
  182: *>
  183: *>  The matrix Q is represented as a product of elementary reflectors
  184: *>
  185: *>     Q = H(1) H(2) . . . H(k), where k = min(n,m).
  186: *>
  187: *>  Each H(i) has the form
  188: *>
  189: *>     H(i) = I - taua * v * v**H
  190: *>
  191: *>  where taua is a complex scalar, and v is a complex vector with
  192: *>  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
  193: *>  and taua in TAUA(i).
  194: *>  To form Q explicitly, use LAPACK subroutine ZUNGQR.
  195: *>  To use Q to update another matrix, use LAPACK subroutine ZUNMQR.
  196: *>
  197: *>  The matrix Z is represented as a product of elementary reflectors
  198: *>
  199: *>     Z = H(1) H(2) . . . H(k), where k = min(n,p).
  200: *>
  201: *>  Each H(i) has the form
  202: *>
  203: *>     H(i) = I - taub * v * v**H
  204: *>
  205: *>  where taub is a complex scalar, and v is a complex vector with
  206: *>  v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in
  207: *>  B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
  208: *>  To form Z explicitly, use LAPACK subroutine ZUNGRQ.
  209: *>  To use Z to update another matrix, use LAPACK subroutine ZUNMRQ.
  210: *> \endverbatim
  211: *>
  212: *  =====================================================================
  213:       SUBROUTINE ZGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
  214:      $                   LWORK, INFO )
  215: *
  216: *  -- LAPACK computational routine --
  217: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  218: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  219: *
  220: *     .. Scalar Arguments ..
  221:       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
  222: *     ..
  223: *     .. Array Arguments ..
  224:       COMPLEX*16         A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
  225:      $                   WORK( * )
  226: *     ..
  227: *
  228: *  =====================================================================
  229: *
  230: *     .. Local Scalars ..
  231:       LOGICAL            LQUERY
  232:       INTEGER            LOPT, LWKOPT, NB, NB1, NB2, NB3
  233: *     ..
  234: *     .. External Subroutines ..
  235:       EXTERNAL           XERBLA, ZGEQRF, ZGERQF, ZUNMQR
  236: *     ..
  237: *     .. External Functions ..
  238:       INTEGER            ILAENV
  239:       EXTERNAL           ILAENV
  240: *     ..
  241: *     .. Intrinsic Functions ..
  242:       INTRINSIC          INT, MAX, MIN
  243: *     ..
  244: *     .. Executable Statements ..
  245: *
  246: *     Test the input parameters
  247: *
  248:       INFO = 0
  249:       NB1 = ILAENV( 1, 'ZGEQRF', ' ', N, M, -1, -1 )
  250:       NB2 = ILAENV( 1, 'ZGERQF', ' ', N, P, -1, -1 )
  251:       NB3 = ILAENV( 1, 'ZUNMQR', ' ', N, M, P, -1 )
  252:       NB = MAX( NB1, NB2, NB3 )
  253:       LWKOPT = MAX( N, M, P )*NB
  254:       WORK( 1 ) = LWKOPT
  255:       LQUERY = ( LWORK.EQ.-1 )
  256:       IF( N.LT.0 ) THEN
  257:          INFO = -1
  258:       ELSE IF( M.LT.0 ) THEN
  259:          INFO = -2
  260:       ELSE IF( P.LT.0 ) THEN
  261:          INFO = -3
  262:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  263:          INFO = -5
  264:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  265:          INFO = -8
  266:       ELSE IF( LWORK.LT.MAX( 1, N, M, P ) .AND. .NOT.LQUERY ) THEN
  267:          INFO = -11
  268:       END IF
  269:       IF( INFO.NE.0 ) THEN
  270:          CALL XERBLA( 'ZGGQRF', -INFO )
  271:          RETURN
  272:       ELSE IF( LQUERY ) THEN
  273:          RETURN
  274:       END IF
  275: *
  276: *     QR factorization of N-by-M matrix A: A = Q*R
  277: *
  278:       CALL ZGEQRF( N, M, A, LDA, TAUA, WORK, LWORK, INFO )
  279:       LOPT = INT( WORK( 1 ) )
  280: *
  281: *     Update B := Q**H*B.
  282: *
  283:       CALL ZUNMQR( 'Left', 'Conjugate Transpose', N, P, MIN( N, M ), A,
  284:      $             LDA, TAUA, B, LDB, WORK, LWORK, INFO )
  285:       LOPT = MAX( LOPT, INT( WORK( 1 ) ) )
  286: *
  287: *     RQ factorization of N-by-P matrix B: B = T*Z.
  288: *
  289:       CALL ZGERQF( N, P, B, LDB, TAUB, WORK, LWORK, INFO )
  290:       WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) )
  291: *
  292:       RETURN
  293: *
  294: *     End of ZGGQRF
  295: *
  296:       END

CVSweb interface <joel.bertrand@systella.fr>