Annotation of rpl/lapack/lapack/zggqrf.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b ZGGQRF
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZGGQRF + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggqrf.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggqrf.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggqrf.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
        !            22: *                          LWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
        !            26: *       ..
        !            27: *       .. Array Arguments ..
        !            28: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
        !            29: *      $                   WORK( * )
        !            30: *       ..
        !            31: *  
        !            32: *
        !            33: *> \par Purpose:
        !            34: *  =============
        !            35: *>
        !            36: *> \verbatim
        !            37: *>
        !            38: *> ZGGQRF computes a generalized QR factorization of an N-by-M matrix A
        !            39: *> and an N-by-P matrix B:
        !            40: *>
        !            41: *>             A = Q*R,        B = Q*T*Z,
        !            42: *>
        !            43: *> where Q is an N-by-N unitary matrix, Z is a P-by-P unitary matrix,
        !            44: *> and R and T assume one of the forms:
        !            45: *>
        !            46: *> if N >= M,  R = ( R11 ) M  ,   or if N < M,  R = ( R11  R12 ) N,
        !            47: *>                 (  0  ) N-M                         N   M-N
        !            48: *>                    M
        !            49: *>
        !            50: *> where R11 is upper triangular, and
        !            51: *>
        !            52: *> if N <= P,  T = ( 0  T12 ) N,   or if N > P,  T = ( T11 ) N-P,
        !            53: *>                  P-N  N                           ( T21 ) P
        !            54: *>                                                      P
        !            55: *>
        !            56: *> where T12 or T21 is upper triangular.
        !            57: *>
        !            58: *> In particular, if B is square and nonsingular, the GQR factorization
        !            59: *> of A and B implicitly gives the QR factorization of inv(B)*A:
        !            60: *>
        !            61: *>              inv(B)*A = Z**H * (inv(T)*R)
        !            62: *>
        !            63: *> where inv(B) denotes the inverse of the matrix B, and Z**H denotes the
        !            64: *> conjugate transpose of matrix Z.
        !            65: *> \endverbatim
        !            66: *
        !            67: *  Arguments:
        !            68: *  ==========
        !            69: *
        !            70: *> \param[in] N
        !            71: *> \verbatim
        !            72: *>          N is INTEGER
        !            73: *>          The number of rows of the matrices A and B. N >= 0.
        !            74: *> \endverbatim
        !            75: *>
        !            76: *> \param[in] M
        !            77: *> \verbatim
        !            78: *>          M is INTEGER
        !            79: *>          The number of columns of the matrix A.  M >= 0.
        !            80: *> \endverbatim
        !            81: *>
        !            82: *> \param[in] P
        !            83: *> \verbatim
        !            84: *>          P is INTEGER
        !            85: *>          The number of columns of the matrix B.  P >= 0.
        !            86: *> \endverbatim
        !            87: *>
        !            88: *> \param[in,out] A
        !            89: *> \verbatim
        !            90: *>          A is COMPLEX*16 array, dimension (LDA,M)
        !            91: *>          On entry, the N-by-M matrix A.
        !            92: *>          On exit, the elements on and above the diagonal of the array
        !            93: *>          contain the min(N,M)-by-M upper trapezoidal matrix R (R is
        !            94: *>          upper triangular if N >= M); the elements below the diagonal,
        !            95: *>          with the array TAUA, represent the unitary matrix Q as a
        !            96: *>          product of min(N,M) elementary reflectors (see Further
        !            97: *>          Details).
        !            98: *> \endverbatim
        !            99: *>
        !           100: *> \param[in] LDA
        !           101: *> \verbatim
        !           102: *>          LDA is INTEGER
        !           103: *>          The leading dimension of the array A. LDA >= max(1,N).
        !           104: *> \endverbatim
        !           105: *>
        !           106: *> \param[out] TAUA
        !           107: *> \verbatim
        !           108: *>          TAUA is COMPLEX*16 array, dimension (min(N,M))
        !           109: *>          The scalar factors of the elementary reflectors which
        !           110: *>          represent the unitary matrix Q (see Further Details).
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[in,out] B
        !           114: *> \verbatim
        !           115: *>          B is COMPLEX*16 array, dimension (LDB,P)
        !           116: *>          On entry, the N-by-P matrix B.
        !           117: *>          On exit, if N <= P, the upper triangle of the subarray
        !           118: *>          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
        !           119: *>          if N > P, the elements on and above the (N-P)-th subdiagonal
        !           120: *>          contain the N-by-P upper trapezoidal matrix T; the remaining
        !           121: *>          elements, with the array TAUB, represent the unitary
        !           122: *>          matrix Z as a product of elementary reflectors (see Further
        !           123: *>          Details).
        !           124: *> \endverbatim
        !           125: *>
        !           126: *> \param[in] LDB
        !           127: *> \verbatim
        !           128: *>          LDB is INTEGER
        !           129: *>          The leading dimension of the array B. LDB >= max(1,N).
        !           130: *> \endverbatim
        !           131: *>
        !           132: *> \param[out] TAUB
        !           133: *> \verbatim
        !           134: *>          TAUB is COMPLEX*16 array, dimension (min(N,P))
        !           135: *>          The scalar factors of the elementary reflectors which
        !           136: *>          represent the unitary matrix Z (see Further Details).
        !           137: *> \endverbatim
        !           138: *>
        !           139: *> \param[out] WORK
        !           140: *> \verbatim
        !           141: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           142: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           143: *> \endverbatim
        !           144: *>
        !           145: *> \param[in] LWORK
        !           146: *> \verbatim
        !           147: *>          LWORK is INTEGER
        !           148: *>          The dimension of the array WORK. LWORK >= max(1,N,M,P).
        !           149: *>          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
        !           150: *>          where NB1 is the optimal blocksize for the QR factorization
        !           151: *>          of an N-by-M matrix, NB2 is the optimal blocksize for the
        !           152: *>          RQ factorization of an N-by-P matrix, and NB3 is the optimal
        !           153: *>          blocksize for a call of ZUNMQR.
        !           154: *>
        !           155: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           156: *>          only calculates the optimal size of the WORK array, returns
        !           157: *>          this value as the first entry of the WORK array, and no error
        !           158: *>          message related to LWORK is issued by XERBLA.
        !           159: *> \endverbatim
        !           160: *>
        !           161: *> \param[out] INFO
        !           162: *> \verbatim
        !           163: *>          INFO is INTEGER
        !           164: *>           = 0:  successful exit
        !           165: *>           < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           166: *> \endverbatim
        !           167: *
        !           168: *  Authors:
        !           169: *  ========
        !           170: *
        !           171: *> \author Univ. of Tennessee 
        !           172: *> \author Univ. of California Berkeley 
        !           173: *> \author Univ. of Colorado Denver 
        !           174: *> \author NAG Ltd. 
        !           175: *
        !           176: *> \date November 2011
        !           177: *
        !           178: *> \ingroup complex16OTHERcomputational
        !           179: *
        !           180: *> \par Further Details:
        !           181: *  =====================
        !           182: *>
        !           183: *> \verbatim
        !           184: *>
        !           185: *>  The matrix Q is represented as a product of elementary reflectors
        !           186: *>
        !           187: *>     Q = H(1) H(2) . . . H(k), where k = min(n,m).
        !           188: *>
        !           189: *>  Each H(i) has the form
        !           190: *>
        !           191: *>     H(i) = I - taua * v * v**H
        !           192: *>
        !           193: *>  where taua is a complex scalar, and v is a complex vector with
        !           194: *>  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
        !           195: *>  and taua in TAUA(i).
        !           196: *>  To form Q explicitly, use LAPACK subroutine ZUNGQR.
        !           197: *>  To use Q to update another matrix, use LAPACK subroutine ZUNMQR.
        !           198: *>
        !           199: *>  The matrix Z is represented as a product of elementary reflectors
        !           200: *>
        !           201: *>     Z = H(1) H(2) . . . H(k), where k = min(n,p).
        !           202: *>
        !           203: *>  Each H(i) has the form
        !           204: *>
        !           205: *>     H(i) = I - taub * v * v**H
        !           206: *>
        !           207: *>  where taub is a complex scalar, and v is a complex vector with
        !           208: *>  v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in
        !           209: *>  B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
        !           210: *>  To form Z explicitly, use LAPACK subroutine ZUNGRQ.
        !           211: *>  To use Z to update another matrix, use LAPACK subroutine ZUNMRQ.
        !           212: *> \endverbatim
        !           213: *>
        !           214: *  =====================================================================
1.1       bertrand  215:       SUBROUTINE ZGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
                    216:      $                   LWORK, INFO )
                    217: *
1.9     ! bertrand  218: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  219: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    220: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  221: *     November 2011
1.1       bertrand  222: *
                    223: *     .. Scalar Arguments ..
                    224:       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
                    225: *     ..
                    226: *     .. Array Arguments ..
                    227:       COMPLEX*16         A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
                    228:      $                   WORK( * )
                    229: *     ..
                    230: *
                    231: *  =====================================================================
                    232: *
                    233: *     .. Local Scalars ..
                    234:       LOGICAL            LQUERY
                    235:       INTEGER            LOPT, LWKOPT, NB, NB1, NB2, NB3
                    236: *     ..
                    237: *     .. External Subroutines ..
                    238:       EXTERNAL           XERBLA, ZGEQRF, ZGERQF, ZUNMQR
                    239: *     ..
                    240: *     .. External Functions ..
                    241:       INTEGER            ILAENV
                    242:       EXTERNAL           ILAENV
                    243: *     ..
                    244: *     .. Intrinsic Functions ..
                    245:       INTRINSIC          INT, MAX, MIN
                    246: *     ..
                    247: *     .. Executable Statements ..
                    248: *
                    249: *     Test the input parameters
                    250: *
                    251:       INFO = 0
                    252:       NB1 = ILAENV( 1, 'ZGEQRF', ' ', N, M, -1, -1 )
                    253:       NB2 = ILAENV( 1, 'ZGERQF', ' ', N, P, -1, -1 )
                    254:       NB3 = ILAENV( 1, 'ZUNMQR', ' ', N, M, P, -1 )
                    255:       NB = MAX( NB1, NB2, NB3 )
                    256:       LWKOPT = MAX( N, M, P )*NB
                    257:       WORK( 1 ) = LWKOPT
                    258:       LQUERY = ( LWORK.EQ.-1 )
                    259:       IF( N.LT.0 ) THEN
                    260:          INFO = -1
                    261:       ELSE IF( M.LT.0 ) THEN
                    262:          INFO = -2
                    263:       ELSE IF( P.LT.0 ) THEN
                    264:          INFO = -3
                    265:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    266:          INFO = -5
                    267:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    268:          INFO = -8
                    269:       ELSE IF( LWORK.LT.MAX( 1, N, M, P ) .AND. .NOT.LQUERY ) THEN
                    270:          INFO = -11
                    271:       END IF
                    272:       IF( INFO.NE.0 ) THEN
                    273:          CALL XERBLA( 'ZGGQRF', -INFO )
                    274:          RETURN
                    275:       ELSE IF( LQUERY ) THEN
                    276:          RETURN
                    277:       END IF
                    278: *
                    279: *     QR factorization of N-by-M matrix A: A = Q*R
                    280: *
                    281:       CALL ZGEQRF( N, M, A, LDA, TAUA, WORK, LWORK, INFO )
                    282:       LOPT = WORK( 1 )
                    283: *
1.8       bertrand  284: *     Update B := Q**H*B.
1.1       bertrand  285: *
                    286:       CALL ZUNMQR( 'Left', 'Conjugate Transpose', N, P, MIN( N, M ), A,
                    287:      $             LDA, TAUA, B, LDB, WORK, LWORK, INFO )
                    288:       LOPT = MAX( LOPT, INT( WORK( 1 ) ) )
                    289: *
                    290: *     RQ factorization of N-by-P matrix B: B = T*Z.
                    291: *
                    292:       CALL ZGERQF( N, P, B, LDB, TAUB, WORK, LWORK, INFO )
                    293:       WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) )
                    294: *
                    295:       RETURN
                    296: *
                    297: *     End of ZGGQRF
                    298: *
                    299:       END

CVSweb interface <joel.bertrand@systella.fr>