Annotation of rpl/lapack/lapack/zggqrf.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE ZGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
                      2:      $                   LWORK, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       COMPLEX*16         A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
                     14:      $                   WORK( * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  ZGGQRF computes a generalized QR factorization of an N-by-M matrix A
                     21: *  and an N-by-P matrix B:
                     22: *
                     23: *              A = Q*R,        B = Q*T*Z,
                     24: *
                     25: *  where Q is an N-by-N unitary matrix, Z is a P-by-P unitary matrix,
                     26: *  and R and T assume one of the forms:
                     27: *
                     28: *  if N >= M,  R = ( R11 ) M  ,   or if N < M,  R = ( R11  R12 ) N,
                     29: *                  (  0  ) N-M                         N   M-N
                     30: *                     M
                     31: *
                     32: *  where R11 is upper triangular, and
                     33: *
                     34: *  if N <= P,  T = ( 0  T12 ) N,   or if N > P,  T = ( T11 ) N-P,
                     35: *                   P-N  N                           ( T21 ) P
                     36: *                                                       P
                     37: *
                     38: *  where T12 or T21 is upper triangular.
                     39: *
                     40: *  In particular, if B is square and nonsingular, the GQR factorization
                     41: *  of A and B implicitly gives the QR factorization of inv(B)*A:
                     42: *
                     43: *               inv(B)*A = Z'*(inv(T)*R)
                     44: *
                     45: *  where inv(B) denotes the inverse of the matrix B, and Z' denotes the
                     46: *  conjugate transpose of matrix Z.
                     47: *
                     48: *  Arguments
                     49: *  =========
                     50: *
                     51: *  N       (input) INTEGER
                     52: *          The number of rows of the matrices A and B. N >= 0.
                     53: *
                     54: *  M       (input) INTEGER
                     55: *          The number of columns of the matrix A.  M >= 0.
                     56: *
                     57: *  P       (input) INTEGER
                     58: *          The number of columns of the matrix B.  P >= 0.
                     59: *
                     60: *  A       (input/output) COMPLEX*16 array, dimension (LDA,M)
                     61: *          On entry, the N-by-M matrix A.
                     62: *          On exit, the elements on and above the diagonal of the array
                     63: *          contain the min(N,M)-by-M upper trapezoidal matrix R (R is
                     64: *          upper triangular if N >= M); the elements below the diagonal,
                     65: *          with the array TAUA, represent the unitary matrix Q as a
                     66: *          product of min(N,M) elementary reflectors (see Further
                     67: *          Details).
                     68: *
                     69: *  LDA     (input) INTEGER
                     70: *          The leading dimension of the array A. LDA >= max(1,N).
                     71: *
                     72: *  TAUA    (output) COMPLEX*16 array, dimension (min(N,M))
                     73: *          The scalar factors of the elementary reflectors which
                     74: *          represent the unitary matrix Q (see Further Details).
                     75: *
                     76: *  B       (input/output) COMPLEX*16 array, dimension (LDB,P)
                     77: *          On entry, the N-by-P matrix B.
                     78: *          On exit, if N <= P, the upper triangle of the subarray
                     79: *          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
                     80: *          if N > P, the elements on and above the (N-P)-th subdiagonal
                     81: *          contain the N-by-P upper trapezoidal matrix T; the remaining
                     82: *          elements, with the array TAUB, represent the unitary
                     83: *          matrix Z as a product of elementary reflectors (see Further
                     84: *          Details).
                     85: *
                     86: *  LDB     (input) INTEGER
                     87: *          The leading dimension of the array B. LDB >= max(1,N).
                     88: *
                     89: *  TAUB    (output) COMPLEX*16 array, dimension (min(N,P))
                     90: *          The scalar factors of the elementary reflectors which
                     91: *          represent the unitary matrix Z (see Further Details).
                     92: *
                     93: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                     94: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     95: *
                     96: *  LWORK   (input) INTEGER
                     97: *          The dimension of the array WORK. LWORK >= max(1,N,M,P).
                     98: *          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
                     99: *          where NB1 is the optimal blocksize for the QR factorization
                    100: *          of an N-by-M matrix, NB2 is the optimal blocksize for the
                    101: *          RQ factorization of an N-by-P matrix, and NB3 is the optimal
                    102: *          blocksize for a call of ZUNMQR.
                    103: *
                    104: *          If LWORK = -1, then a workspace query is assumed; the routine
                    105: *          only calculates the optimal size of the WORK array, returns
                    106: *          this value as the first entry of the WORK array, and no error
                    107: *          message related to LWORK is issued by XERBLA.
                    108: *
                    109: *  INFO    (output) INTEGER
                    110: *           = 0:  successful exit
                    111: *           < 0:  if INFO = -i, the i-th argument had an illegal value.
                    112: *
                    113: *  Further Details
                    114: *  ===============
                    115: *
                    116: *  The matrix Q is represented as a product of elementary reflectors
                    117: *
                    118: *     Q = H(1) H(2) . . . H(k), where k = min(n,m).
                    119: *
                    120: *  Each H(i) has the form
                    121: *
                    122: *     H(i) = I - taua * v * v'
                    123: *
                    124: *  where taua is a complex scalar, and v is a complex vector with
                    125: *  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
                    126: *  and taua in TAUA(i).
                    127: *  To form Q explicitly, use LAPACK subroutine ZUNGQR.
                    128: *  To use Q to update another matrix, use LAPACK subroutine ZUNMQR.
                    129: *
                    130: *  The matrix Z is represented as a product of elementary reflectors
                    131: *
                    132: *     Z = H(1) H(2) . . . H(k), where k = min(n,p).
                    133: *
                    134: *  Each H(i) has the form
                    135: *
                    136: *     H(i) = I - taub * v * v'
                    137: *
                    138: *  where taub is a complex scalar, and v is a complex vector with
                    139: *  v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in
                    140: *  B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
                    141: *  To form Z explicitly, use LAPACK subroutine ZUNGRQ.
                    142: *  To use Z to update another matrix, use LAPACK subroutine ZUNMRQ.
                    143: *
                    144: *  =====================================================================
                    145: *
                    146: *     .. Local Scalars ..
                    147:       LOGICAL            LQUERY
                    148:       INTEGER            LOPT, LWKOPT, NB, NB1, NB2, NB3
                    149: *     ..
                    150: *     .. External Subroutines ..
                    151:       EXTERNAL           XERBLA, ZGEQRF, ZGERQF, ZUNMQR
                    152: *     ..
                    153: *     .. External Functions ..
                    154:       INTEGER            ILAENV
                    155:       EXTERNAL           ILAENV
                    156: *     ..
                    157: *     .. Intrinsic Functions ..
                    158:       INTRINSIC          INT, MAX, MIN
                    159: *     ..
                    160: *     .. Executable Statements ..
                    161: *
                    162: *     Test the input parameters
                    163: *
                    164:       INFO = 0
                    165:       NB1 = ILAENV( 1, 'ZGEQRF', ' ', N, M, -1, -1 )
                    166:       NB2 = ILAENV( 1, 'ZGERQF', ' ', N, P, -1, -1 )
                    167:       NB3 = ILAENV( 1, 'ZUNMQR', ' ', N, M, P, -1 )
                    168:       NB = MAX( NB1, NB2, NB3 )
                    169:       LWKOPT = MAX( N, M, P )*NB
                    170:       WORK( 1 ) = LWKOPT
                    171:       LQUERY = ( LWORK.EQ.-1 )
                    172:       IF( N.LT.0 ) THEN
                    173:          INFO = -1
                    174:       ELSE IF( M.LT.0 ) THEN
                    175:          INFO = -2
                    176:       ELSE IF( P.LT.0 ) THEN
                    177:          INFO = -3
                    178:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    179:          INFO = -5
                    180:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    181:          INFO = -8
                    182:       ELSE IF( LWORK.LT.MAX( 1, N, M, P ) .AND. .NOT.LQUERY ) THEN
                    183:          INFO = -11
                    184:       END IF
                    185:       IF( INFO.NE.0 ) THEN
                    186:          CALL XERBLA( 'ZGGQRF', -INFO )
                    187:          RETURN
                    188:       ELSE IF( LQUERY ) THEN
                    189:          RETURN
                    190:       END IF
                    191: *
                    192: *     QR factorization of N-by-M matrix A: A = Q*R
                    193: *
                    194:       CALL ZGEQRF( N, M, A, LDA, TAUA, WORK, LWORK, INFO )
                    195:       LOPT = WORK( 1 )
                    196: *
                    197: *     Update B := Q'*B.
                    198: *
                    199:       CALL ZUNMQR( 'Left', 'Conjugate Transpose', N, P, MIN( N, M ), A,
                    200:      $             LDA, TAUA, B, LDB, WORK, LWORK, INFO )
                    201:       LOPT = MAX( LOPT, INT( WORK( 1 ) ) )
                    202: *
                    203: *     RQ factorization of N-by-P matrix B: B = T*Z.
                    204: *
                    205:       CALL ZGERQF( N, P, B, LDB, TAUB, WORK, LWORK, INFO )
                    206:       WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) )
                    207: *
                    208:       RETURN
                    209: *
                    210: *     End of ZGGQRF
                    211: *
                    212:       END

CVSweb interface <joel.bertrand@systella.fr>