Annotation of rpl/lapack/lapack/zggqrf.f, revision 1.12

1.9       bertrand    1: *> \brief \b ZGGQRF
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZGGQRF + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggqrf.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggqrf.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggqrf.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
                     22: *                          LWORK, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
                     29: *      $                   WORK( * )
                     30: *       ..
                     31: *  
                     32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZGGQRF computes a generalized QR factorization of an N-by-M matrix A
                     39: *> and an N-by-P matrix B:
                     40: *>
                     41: *>             A = Q*R,        B = Q*T*Z,
                     42: *>
                     43: *> where Q is an N-by-N unitary matrix, Z is a P-by-P unitary matrix,
                     44: *> and R and T assume one of the forms:
                     45: *>
                     46: *> if N >= M,  R = ( R11 ) M  ,   or if N < M,  R = ( R11  R12 ) N,
                     47: *>                 (  0  ) N-M                         N   M-N
                     48: *>                    M
                     49: *>
                     50: *> where R11 is upper triangular, and
                     51: *>
                     52: *> if N <= P,  T = ( 0  T12 ) N,   or if N > P,  T = ( T11 ) N-P,
                     53: *>                  P-N  N                           ( T21 ) P
                     54: *>                                                      P
                     55: *>
                     56: *> where T12 or T21 is upper triangular.
                     57: *>
                     58: *> In particular, if B is square and nonsingular, the GQR factorization
                     59: *> of A and B implicitly gives the QR factorization of inv(B)*A:
                     60: *>
                     61: *>              inv(B)*A = Z**H * (inv(T)*R)
                     62: *>
                     63: *> where inv(B) denotes the inverse of the matrix B, and Z**H denotes the
                     64: *> conjugate transpose of matrix Z.
                     65: *> \endverbatim
                     66: *
                     67: *  Arguments:
                     68: *  ==========
                     69: *
                     70: *> \param[in] N
                     71: *> \verbatim
                     72: *>          N is INTEGER
                     73: *>          The number of rows of the matrices A and B. N >= 0.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] M
                     77: *> \verbatim
                     78: *>          M is INTEGER
                     79: *>          The number of columns of the matrix A.  M >= 0.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] P
                     83: *> \verbatim
                     84: *>          P is INTEGER
                     85: *>          The number of columns of the matrix B.  P >= 0.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in,out] A
                     89: *> \verbatim
                     90: *>          A is COMPLEX*16 array, dimension (LDA,M)
                     91: *>          On entry, the N-by-M matrix A.
                     92: *>          On exit, the elements on and above the diagonal of the array
                     93: *>          contain the min(N,M)-by-M upper trapezoidal matrix R (R is
                     94: *>          upper triangular if N >= M); the elements below the diagonal,
                     95: *>          with the array TAUA, represent the unitary matrix Q as a
                     96: *>          product of min(N,M) elementary reflectors (see Further
                     97: *>          Details).
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] LDA
                    101: *> \verbatim
                    102: *>          LDA is INTEGER
                    103: *>          The leading dimension of the array A. LDA >= max(1,N).
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[out] TAUA
                    107: *> \verbatim
                    108: *>          TAUA is COMPLEX*16 array, dimension (min(N,M))
                    109: *>          The scalar factors of the elementary reflectors which
                    110: *>          represent the unitary matrix Q (see Further Details).
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in,out] B
                    114: *> \verbatim
                    115: *>          B is COMPLEX*16 array, dimension (LDB,P)
                    116: *>          On entry, the N-by-P matrix B.
                    117: *>          On exit, if N <= P, the upper triangle of the subarray
                    118: *>          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
                    119: *>          if N > P, the elements on and above the (N-P)-th subdiagonal
                    120: *>          contain the N-by-P upper trapezoidal matrix T; the remaining
                    121: *>          elements, with the array TAUB, represent the unitary
                    122: *>          matrix Z as a product of elementary reflectors (see Further
                    123: *>          Details).
                    124: *> \endverbatim
                    125: *>
                    126: *> \param[in] LDB
                    127: *> \verbatim
                    128: *>          LDB is INTEGER
                    129: *>          The leading dimension of the array B. LDB >= max(1,N).
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[out] TAUB
                    133: *> \verbatim
                    134: *>          TAUB is COMPLEX*16 array, dimension (min(N,P))
                    135: *>          The scalar factors of the elementary reflectors which
                    136: *>          represent the unitary matrix Z (see Further Details).
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[out] WORK
                    140: *> \verbatim
                    141: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    142: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in] LWORK
                    146: *> \verbatim
                    147: *>          LWORK is INTEGER
                    148: *>          The dimension of the array WORK. LWORK >= max(1,N,M,P).
                    149: *>          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
                    150: *>          where NB1 is the optimal blocksize for the QR factorization
                    151: *>          of an N-by-M matrix, NB2 is the optimal blocksize for the
                    152: *>          RQ factorization of an N-by-P matrix, and NB3 is the optimal
                    153: *>          blocksize for a call of ZUNMQR.
                    154: *>
                    155: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    156: *>          only calculates the optimal size of the WORK array, returns
                    157: *>          this value as the first entry of the WORK array, and no error
                    158: *>          message related to LWORK is issued by XERBLA.
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[out] INFO
                    162: *> \verbatim
                    163: *>          INFO is INTEGER
                    164: *>           = 0:  successful exit
                    165: *>           < 0:  if INFO = -i, the i-th argument had an illegal value.
                    166: *> \endverbatim
                    167: *
                    168: *  Authors:
                    169: *  ========
                    170: *
                    171: *> \author Univ. of Tennessee 
                    172: *> \author Univ. of California Berkeley 
                    173: *> \author Univ. of Colorado Denver 
                    174: *> \author NAG Ltd. 
                    175: *
                    176: *> \date November 2011
                    177: *
                    178: *> \ingroup complex16OTHERcomputational
                    179: *
                    180: *> \par Further Details:
                    181: *  =====================
                    182: *>
                    183: *> \verbatim
                    184: *>
                    185: *>  The matrix Q is represented as a product of elementary reflectors
                    186: *>
                    187: *>     Q = H(1) H(2) . . . H(k), where k = min(n,m).
                    188: *>
                    189: *>  Each H(i) has the form
                    190: *>
                    191: *>     H(i) = I - taua * v * v**H
                    192: *>
                    193: *>  where taua is a complex scalar, and v is a complex vector with
                    194: *>  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
                    195: *>  and taua in TAUA(i).
                    196: *>  To form Q explicitly, use LAPACK subroutine ZUNGQR.
                    197: *>  To use Q to update another matrix, use LAPACK subroutine ZUNMQR.
                    198: *>
                    199: *>  The matrix Z is represented as a product of elementary reflectors
                    200: *>
                    201: *>     Z = H(1) H(2) . . . H(k), where k = min(n,p).
                    202: *>
                    203: *>  Each H(i) has the form
                    204: *>
                    205: *>     H(i) = I - taub * v * v**H
                    206: *>
                    207: *>  where taub is a complex scalar, and v is a complex vector with
                    208: *>  v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in
                    209: *>  B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
                    210: *>  To form Z explicitly, use LAPACK subroutine ZUNGRQ.
                    211: *>  To use Z to update another matrix, use LAPACK subroutine ZUNMRQ.
                    212: *> \endverbatim
                    213: *>
                    214: *  =====================================================================
1.1       bertrand  215:       SUBROUTINE ZGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
                    216:      $                   LWORK, INFO )
                    217: *
1.9       bertrand  218: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  219: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    220: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  221: *     November 2011
1.1       bertrand  222: *
                    223: *     .. Scalar Arguments ..
                    224:       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
                    225: *     ..
                    226: *     .. Array Arguments ..
                    227:       COMPLEX*16         A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
                    228:      $                   WORK( * )
                    229: *     ..
                    230: *
                    231: *  =====================================================================
                    232: *
                    233: *     .. Local Scalars ..
                    234:       LOGICAL            LQUERY
                    235:       INTEGER            LOPT, LWKOPT, NB, NB1, NB2, NB3
                    236: *     ..
                    237: *     .. External Subroutines ..
                    238:       EXTERNAL           XERBLA, ZGEQRF, ZGERQF, ZUNMQR
                    239: *     ..
                    240: *     .. External Functions ..
                    241:       INTEGER            ILAENV
                    242:       EXTERNAL           ILAENV
                    243: *     ..
                    244: *     .. Intrinsic Functions ..
                    245:       INTRINSIC          INT, MAX, MIN
                    246: *     ..
                    247: *     .. Executable Statements ..
                    248: *
                    249: *     Test the input parameters
                    250: *
                    251:       INFO = 0
                    252:       NB1 = ILAENV( 1, 'ZGEQRF', ' ', N, M, -1, -1 )
                    253:       NB2 = ILAENV( 1, 'ZGERQF', ' ', N, P, -1, -1 )
                    254:       NB3 = ILAENV( 1, 'ZUNMQR', ' ', N, M, P, -1 )
                    255:       NB = MAX( NB1, NB2, NB3 )
                    256:       LWKOPT = MAX( N, M, P )*NB
                    257:       WORK( 1 ) = LWKOPT
                    258:       LQUERY = ( LWORK.EQ.-1 )
                    259:       IF( N.LT.0 ) THEN
                    260:          INFO = -1
                    261:       ELSE IF( M.LT.0 ) THEN
                    262:          INFO = -2
                    263:       ELSE IF( P.LT.0 ) THEN
                    264:          INFO = -3
                    265:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    266:          INFO = -5
                    267:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    268:          INFO = -8
                    269:       ELSE IF( LWORK.LT.MAX( 1, N, M, P ) .AND. .NOT.LQUERY ) THEN
                    270:          INFO = -11
                    271:       END IF
                    272:       IF( INFO.NE.0 ) THEN
                    273:          CALL XERBLA( 'ZGGQRF', -INFO )
                    274:          RETURN
                    275:       ELSE IF( LQUERY ) THEN
                    276:          RETURN
                    277:       END IF
                    278: *
                    279: *     QR factorization of N-by-M matrix A: A = Q*R
                    280: *
                    281:       CALL ZGEQRF( N, M, A, LDA, TAUA, WORK, LWORK, INFO )
                    282:       LOPT = WORK( 1 )
                    283: *
1.8       bertrand  284: *     Update B := Q**H*B.
1.1       bertrand  285: *
                    286:       CALL ZUNMQR( 'Left', 'Conjugate Transpose', N, P, MIN( N, M ), A,
                    287:      $             LDA, TAUA, B, LDB, WORK, LWORK, INFO )
                    288:       LOPT = MAX( LOPT, INT( WORK( 1 ) ) )
                    289: *
                    290: *     RQ factorization of N-by-P matrix B: B = T*Z.
                    291: *
                    292:       CALL ZGERQF( N, P, B, LDB, TAUB, WORK, LWORK, INFO )
                    293:       WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) )
                    294: *
                    295:       RETURN
                    296: *
                    297: *     End of ZGGQRF
                    298: *
                    299:       END

CVSweb interface <joel.bertrand@systella.fr>