Annotation of rpl/lapack/lapack/zggqrf.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
        !             2:      $                   LWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       COMPLEX*16         A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
        !            14:      $                   WORK( * )
        !            15: *     ..
        !            16: *
        !            17: *  Purpose
        !            18: *  =======
        !            19: *
        !            20: *  ZGGQRF computes a generalized QR factorization of an N-by-M matrix A
        !            21: *  and an N-by-P matrix B:
        !            22: *
        !            23: *              A = Q*R,        B = Q*T*Z,
        !            24: *
        !            25: *  where Q is an N-by-N unitary matrix, Z is a P-by-P unitary matrix,
        !            26: *  and R and T assume one of the forms:
        !            27: *
        !            28: *  if N >= M,  R = ( R11 ) M  ,   or if N < M,  R = ( R11  R12 ) N,
        !            29: *                  (  0  ) N-M                         N   M-N
        !            30: *                     M
        !            31: *
        !            32: *  where R11 is upper triangular, and
        !            33: *
        !            34: *  if N <= P,  T = ( 0  T12 ) N,   or if N > P,  T = ( T11 ) N-P,
        !            35: *                   P-N  N                           ( T21 ) P
        !            36: *                                                       P
        !            37: *
        !            38: *  where T12 or T21 is upper triangular.
        !            39: *
        !            40: *  In particular, if B is square and nonsingular, the GQR factorization
        !            41: *  of A and B implicitly gives the QR factorization of inv(B)*A:
        !            42: *
        !            43: *               inv(B)*A = Z'*(inv(T)*R)
        !            44: *
        !            45: *  where inv(B) denotes the inverse of the matrix B, and Z' denotes the
        !            46: *  conjugate transpose of matrix Z.
        !            47: *
        !            48: *  Arguments
        !            49: *  =========
        !            50: *
        !            51: *  N       (input) INTEGER
        !            52: *          The number of rows of the matrices A and B. N >= 0.
        !            53: *
        !            54: *  M       (input) INTEGER
        !            55: *          The number of columns of the matrix A.  M >= 0.
        !            56: *
        !            57: *  P       (input) INTEGER
        !            58: *          The number of columns of the matrix B.  P >= 0.
        !            59: *
        !            60: *  A       (input/output) COMPLEX*16 array, dimension (LDA,M)
        !            61: *          On entry, the N-by-M matrix A.
        !            62: *          On exit, the elements on and above the diagonal of the array
        !            63: *          contain the min(N,M)-by-M upper trapezoidal matrix R (R is
        !            64: *          upper triangular if N >= M); the elements below the diagonal,
        !            65: *          with the array TAUA, represent the unitary matrix Q as a
        !            66: *          product of min(N,M) elementary reflectors (see Further
        !            67: *          Details).
        !            68: *
        !            69: *  LDA     (input) INTEGER
        !            70: *          The leading dimension of the array A. LDA >= max(1,N).
        !            71: *
        !            72: *  TAUA    (output) COMPLEX*16 array, dimension (min(N,M))
        !            73: *          The scalar factors of the elementary reflectors which
        !            74: *          represent the unitary matrix Q (see Further Details).
        !            75: *
        !            76: *  B       (input/output) COMPLEX*16 array, dimension (LDB,P)
        !            77: *          On entry, the N-by-P matrix B.
        !            78: *          On exit, if N <= P, the upper triangle of the subarray
        !            79: *          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
        !            80: *          if N > P, the elements on and above the (N-P)-th subdiagonal
        !            81: *          contain the N-by-P upper trapezoidal matrix T; the remaining
        !            82: *          elements, with the array TAUB, represent the unitary
        !            83: *          matrix Z as a product of elementary reflectors (see Further
        !            84: *          Details).
        !            85: *
        !            86: *  LDB     (input) INTEGER
        !            87: *          The leading dimension of the array B. LDB >= max(1,N).
        !            88: *
        !            89: *  TAUB    (output) COMPLEX*16 array, dimension (min(N,P))
        !            90: *          The scalar factors of the elementary reflectors which
        !            91: *          represent the unitary matrix Z (see Further Details).
        !            92: *
        !            93: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !            94: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            95: *
        !            96: *  LWORK   (input) INTEGER
        !            97: *          The dimension of the array WORK. LWORK >= max(1,N,M,P).
        !            98: *          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
        !            99: *          where NB1 is the optimal blocksize for the QR factorization
        !           100: *          of an N-by-M matrix, NB2 is the optimal blocksize for the
        !           101: *          RQ factorization of an N-by-P matrix, and NB3 is the optimal
        !           102: *          blocksize for a call of ZUNMQR.
        !           103: *
        !           104: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           105: *          only calculates the optimal size of the WORK array, returns
        !           106: *          this value as the first entry of the WORK array, and no error
        !           107: *          message related to LWORK is issued by XERBLA.
        !           108: *
        !           109: *  INFO    (output) INTEGER
        !           110: *           = 0:  successful exit
        !           111: *           < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           112: *
        !           113: *  Further Details
        !           114: *  ===============
        !           115: *
        !           116: *  The matrix Q is represented as a product of elementary reflectors
        !           117: *
        !           118: *     Q = H(1) H(2) . . . H(k), where k = min(n,m).
        !           119: *
        !           120: *  Each H(i) has the form
        !           121: *
        !           122: *     H(i) = I - taua * v * v'
        !           123: *
        !           124: *  where taua is a complex scalar, and v is a complex vector with
        !           125: *  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
        !           126: *  and taua in TAUA(i).
        !           127: *  To form Q explicitly, use LAPACK subroutine ZUNGQR.
        !           128: *  To use Q to update another matrix, use LAPACK subroutine ZUNMQR.
        !           129: *
        !           130: *  The matrix Z is represented as a product of elementary reflectors
        !           131: *
        !           132: *     Z = H(1) H(2) . . . H(k), where k = min(n,p).
        !           133: *
        !           134: *  Each H(i) has the form
        !           135: *
        !           136: *     H(i) = I - taub * v * v'
        !           137: *
        !           138: *  where taub is a complex scalar, and v is a complex vector with
        !           139: *  v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in
        !           140: *  B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
        !           141: *  To form Z explicitly, use LAPACK subroutine ZUNGRQ.
        !           142: *  To use Z to update another matrix, use LAPACK subroutine ZUNMRQ.
        !           143: *
        !           144: *  =====================================================================
        !           145: *
        !           146: *     .. Local Scalars ..
        !           147:       LOGICAL            LQUERY
        !           148:       INTEGER            LOPT, LWKOPT, NB, NB1, NB2, NB3
        !           149: *     ..
        !           150: *     .. External Subroutines ..
        !           151:       EXTERNAL           XERBLA, ZGEQRF, ZGERQF, ZUNMQR
        !           152: *     ..
        !           153: *     .. External Functions ..
        !           154:       INTEGER            ILAENV
        !           155:       EXTERNAL           ILAENV
        !           156: *     ..
        !           157: *     .. Intrinsic Functions ..
        !           158:       INTRINSIC          INT, MAX, MIN
        !           159: *     ..
        !           160: *     .. Executable Statements ..
        !           161: *
        !           162: *     Test the input parameters
        !           163: *
        !           164:       INFO = 0
        !           165:       NB1 = ILAENV( 1, 'ZGEQRF', ' ', N, M, -1, -1 )
        !           166:       NB2 = ILAENV( 1, 'ZGERQF', ' ', N, P, -1, -1 )
        !           167:       NB3 = ILAENV( 1, 'ZUNMQR', ' ', N, M, P, -1 )
        !           168:       NB = MAX( NB1, NB2, NB3 )
        !           169:       LWKOPT = MAX( N, M, P )*NB
        !           170:       WORK( 1 ) = LWKOPT
        !           171:       LQUERY = ( LWORK.EQ.-1 )
        !           172:       IF( N.LT.0 ) THEN
        !           173:          INFO = -1
        !           174:       ELSE IF( M.LT.0 ) THEN
        !           175:          INFO = -2
        !           176:       ELSE IF( P.LT.0 ) THEN
        !           177:          INFO = -3
        !           178:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           179:          INFO = -5
        !           180:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           181:          INFO = -8
        !           182:       ELSE IF( LWORK.LT.MAX( 1, N, M, P ) .AND. .NOT.LQUERY ) THEN
        !           183:          INFO = -11
        !           184:       END IF
        !           185:       IF( INFO.NE.0 ) THEN
        !           186:          CALL XERBLA( 'ZGGQRF', -INFO )
        !           187:          RETURN
        !           188:       ELSE IF( LQUERY ) THEN
        !           189:          RETURN
        !           190:       END IF
        !           191: *
        !           192: *     QR factorization of N-by-M matrix A: A = Q*R
        !           193: *
        !           194:       CALL ZGEQRF( N, M, A, LDA, TAUA, WORK, LWORK, INFO )
        !           195:       LOPT = WORK( 1 )
        !           196: *
        !           197: *     Update B := Q'*B.
        !           198: *
        !           199:       CALL ZUNMQR( 'Left', 'Conjugate Transpose', N, P, MIN( N, M ), A,
        !           200:      $             LDA, TAUA, B, LDB, WORK, LWORK, INFO )
        !           201:       LOPT = MAX( LOPT, INT( WORK( 1 ) ) )
        !           202: *
        !           203: *     RQ factorization of N-by-P matrix B: B = T*Z.
        !           204: *
        !           205:       CALL ZGERQF( N, P, B, LDB, TAUB, WORK, LWORK, INFO )
        !           206:       WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) )
        !           207: *
        !           208:       RETURN
        !           209: *
        !           210: *     End of ZGGQRF
        !           211: *
        !           212:       END

CVSweb interface <joel.bertrand@systella.fr>