File:  [local] / rpl / lapack / lapack / zgglse.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:32 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE ZGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
    2:      $                   INFO )
    3: *
    4: *  -- LAPACK driver routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     February 2007
    8: *
    9: *     .. Scalar Arguments ..
   10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
   11: *     ..
   12: *     .. Array Arguments ..
   13:       COMPLEX*16         A( LDA, * ), B( LDB, * ), C( * ), D( * ),
   14:      $                   WORK( * ), X( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZGGLSE solves the linear equality-constrained least squares (LSE)
   21: *  problem:
   22: *
   23: *          minimize || c - A*x ||_2   subject to   B*x = d
   24: *
   25: *  where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
   26: *  M-vector, and d is a given P-vector. It is assumed that
   27: *  P <= N <= M+P, and
   28: *
   29: *           rank(B) = P and  rank( ( A ) ) = N.
   30: *                                ( ( B ) )
   31: *
   32: *  These conditions ensure that the LSE problem has a unique solution,
   33: *  which is obtained using a generalized RQ factorization of the
   34: *  matrices (B, A) given by
   35: *
   36: *     B = (0 R)*Q,   A = Z*T*Q.
   37: *
   38: *  Arguments
   39: *  =========
   40: *
   41: *  M       (input) INTEGER
   42: *          The number of rows of the matrix A.  M >= 0.
   43: *
   44: *  N       (input) INTEGER
   45: *          The number of columns of the matrices A and B. N >= 0.
   46: *
   47: *  P       (input) INTEGER
   48: *          The number of rows of the matrix B. 0 <= P <= N <= M+P.
   49: *
   50: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
   51: *          On entry, the M-by-N matrix A.
   52: *          On exit, the elements on and above the diagonal of the array
   53: *          contain the min(M,N)-by-N upper trapezoidal matrix T.
   54: *
   55: *  LDA     (input) INTEGER
   56: *          The leading dimension of the array A. LDA >= max(1,M).
   57: *
   58: *  B       (input/output) COMPLEX*16 array, dimension (LDB,N)
   59: *          On entry, the P-by-N matrix B.
   60: *          On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
   61: *          contains the P-by-P upper triangular matrix R.
   62: *
   63: *  LDB     (input) INTEGER
   64: *          The leading dimension of the array B. LDB >= max(1,P).
   65: *
   66: *  C       (input/output) COMPLEX*16 array, dimension (M)
   67: *          On entry, C contains the right hand side vector for the
   68: *          least squares part of the LSE problem.
   69: *          On exit, the residual sum of squares for the solution
   70: *          is given by the sum of squares of elements N-P+1 to M of
   71: *          vector C.
   72: *
   73: *  D       (input/output) COMPLEX*16 array, dimension (P)
   74: *          On entry, D contains the right hand side vector for the
   75: *          constrained equation.
   76: *          On exit, D is destroyed.
   77: *
   78: *  X       (output) COMPLEX*16 array, dimension (N)
   79: *          On exit, X is the solution of the LSE problem.
   80: *
   81: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
   82: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   83: *
   84: *  LWORK   (input) INTEGER
   85: *          The dimension of the array WORK. LWORK >= max(1,M+N+P).
   86: *          For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
   87: *          where NB is an upper bound for the optimal blocksizes for
   88: *          ZGEQRF, CGERQF, ZUNMQR and CUNMRQ.
   89: *
   90: *          If LWORK = -1, then a workspace query is assumed; the routine
   91: *          only calculates the optimal size of the WORK array, returns
   92: *          this value as the first entry of the WORK array, and no error
   93: *          message related to LWORK is issued by XERBLA.
   94: *
   95: *  INFO    (output) INTEGER
   96: *          = 0:  successful exit.
   97: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
   98: *          = 1:  the upper triangular factor R associated with B in the
   99: *                generalized RQ factorization of the pair (B, A) is
  100: *                singular, so that rank(B) < P; the least squares
  101: *                solution could not be computed.
  102: *          = 2:  the (N-P) by (N-P) part of the upper trapezoidal factor
  103: *                T associated with A in the generalized RQ factorization
  104: *                of the pair (B, A) is singular, so that
  105: *                rank( (A) ) < N; the least squares solution could not
  106: *                    ( (B) )
  107: *                be computed.
  108: *
  109: *  =====================================================================
  110: *
  111: *     .. Parameters ..
  112:       COMPLEX*16         CONE
  113:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  114: *     ..
  115: *     .. Local Scalars ..
  116:       LOGICAL            LQUERY
  117:       INTEGER            LOPT, LWKMIN, LWKOPT, MN, NB, NB1, NB2, NB3,
  118:      $                   NB4, NR
  119: *     ..
  120: *     .. External Subroutines ..
  121:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGGRQF, ZTRMV,
  122:      $                   ZTRTRS, ZUNMQR, ZUNMRQ
  123: *     ..
  124: *     .. External Functions ..
  125:       INTEGER            ILAENV
  126:       EXTERNAL           ILAENV
  127: *     ..
  128: *     .. Intrinsic Functions ..
  129:       INTRINSIC          INT, MAX, MIN
  130: *     ..
  131: *     .. Executable Statements ..
  132: *
  133: *     Test the input parameters
  134: *
  135:       INFO = 0
  136:       MN = MIN( M, N )
  137:       LQUERY = ( LWORK.EQ.-1 )
  138:       IF( M.LT.0 ) THEN
  139:          INFO = -1
  140:       ELSE IF( N.LT.0 ) THEN
  141:          INFO = -2
  142:       ELSE IF( P.LT.0 .OR. P.GT.N .OR. P.LT.N-M ) THEN
  143:          INFO = -3
  144:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  145:          INFO = -5
  146:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  147:          INFO = -7
  148:       END IF
  149: *
  150: *     Calculate workspace
  151: *
  152:       IF( INFO.EQ.0) THEN
  153:          IF( N.EQ.0 ) THEN
  154:             LWKMIN = 1
  155:             LWKOPT = 1
  156:          ELSE
  157:             NB1 = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
  158:             NB2 = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 )
  159:             NB3 = ILAENV( 1, 'ZUNMQR', ' ', M, N, P, -1 )
  160:             NB4 = ILAENV( 1, 'ZUNMRQ', ' ', M, N, P, -1 )
  161:             NB = MAX( NB1, NB2, NB3, NB4 )
  162:             LWKMIN = M + N + P
  163:             LWKOPT = P + MN + MAX( M, N )*NB
  164:          END IF
  165:          WORK( 1 ) = LWKOPT
  166: *
  167:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  168:             INFO = -12
  169:          END IF
  170:       END IF
  171: *
  172:       IF( INFO.NE.0 ) THEN
  173:          CALL XERBLA( 'ZGGLSE', -INFO )
  174:          RETURN
  175:       ELSE IF( LQUERY ) THEN
  176:          RETURN
  177:       END IF
  178: *
  179: *     Quick return if possible
  180: *
  181:       IF( N.EQ.0 )
  182:      $   RETURN
  183: *
  184: *     Compute the GRQ factorization of matrices B and A:
  185: *
  186: *            B*Q' = (  0  T12 ) P   Z'*A*Q' = ( R11 R12 ) N-P
  187: *                     N-P  P                  (  0  R22 ) M+P-N
  188: *                                               N-P  P
  189: *
  190: *     where T12 and R11 are upper triangular, and Q and Z are
  191: *     unitary.
  192: *
  193:       CALL ZGGRQF( P, M, N, B, LDB, WORK, A, LDA, WORK( P+1 ),
  194:      $             WORK( P+MN+1 ), LWORK-P-MN, INFO )
  195:       LOPT = WORK( P+MN+1 )
  196: *
  197: *     Update c = Z'*c = ( c1 ) N-P
  198: *                       ( c2 ) M+P-N
  199: *
  200:       CALL ZUNMQR( 'Left', 'Conjugate Transpose', M, 1, MN, A, LDA,
  201:      $             WORK( P+1 ), C, MAX( 1, M ), WORK( P+MN+1 ),
  202:      $             LWORK-P-MN, INFO )
  203:       LOPT = MAX( LOPT, INT( WORK( P+MN+1 ) ) )
  204: *
  205: *     Solve T12*x2 = d for x2
  206: *
  207:       IF( P.GT.0 ) THEN
  208:          CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', P, 1,
  209:      $                B( 1, N-P+1 ), LDB, D, P, INFO )
  210: *
  211:          IF( INFO.GT.0 ) THEN
  212:             INFO = 1
  213:             RETURN
  214:          END IF
  215: *
  216: *        Put the solution in X
  217: *
  218:          CALL ZCOPY( P, D, 1, X( N-P+1 ), 1 )
  219: *
  220: *        Update c1
  221: *
  222:          CALL ZGEMV( 'No transpose', N-P, P, -CONE, A( 1, N-P+1 ), LDA,
  223:      $               D, 1, CONE, C, 1 )
  224:       END IF
  225: *
  226: *     Solve R11*x1 = c1 for x1
  227: *
  228:       IF( N.GT.P ) THEN
  229:          CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', N-P, 1,
  230:      $                A, LDA, C, N-P, INFO )
  231: *
  232:          IF( INFO.GT.0 ) THEN
  233:             INFO = 2
  234:             RETURN
  235:          END IF
  236: *
  237: *        Put the solutions in X
  238: *
  239:          CALL ZCOPY( N-P, C, 1, X, 1 )
  240:       END IF
  241: *
  242: *     Compute the residual vector:
  243: *
  244:       IF( M.LT.N ) THEN
  245:          NR = M + P - N
  246:          IF( NR.GT.0 )
  247:      $      CALL ZGEMV( 'No transpose', NR, N-M, -CONE, A( N-P+1, M+1 ),
  248:      $                  LDA, D( NR+1 ), 1, CONE, C( N-P+1 ), 1 )
  249:       ELSE
  250:          NR = P
  251:       END IF
  252:       IF( NR.GT.0 ) THEN
  253:          CALL ZTRMV( 'Upper', 'No transpose', 'Non unit', NR,
  254:      $               A( N-P+1, N-P+1 ), LDA, D, 1 )
  255:          CALL ZAXPY( NR, -CONE, D, 1, C( N-P+1 ), 1 )
  256:       END IF
  257: *
  258: *     Backward transformation x = Q'*x
  259: *
  260:       CALL ZUNMRQ( 'Left', 'Conjugate Transpose', N, 1, P, B, LDB,
  261:      $             WORK( 1 ), X, N, WORK( P+MN+1 ), LWORK-P-MN, INFO )
  262:       WORK( 1 ) = P + MN + MAX( LOPT, INT( WORK( P+MN+1 ) ) )
  263: *
  264:       RETURN
  265: *
  266: *     End of ZGGLSE
  267: *
  268:       END

CVSweb interface <joel.bertrand@systella.fr>