Annotation of rpl/lapack/lapack/zgglse.f, revision 1.17

1.9       bertrand    1: *> \brief <b> ZGGLSE solves overdetermined or underdetermined systems for OTHER matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZGGLSE + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgglse.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgglse.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgglse.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
                     22: *                          INFO )
1.15      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), C( * ), D( * ),
                     29: *      $                   WORK( * ), X( * )
                     30: *       ..
1.15      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZGGLSE solves the linear equality-constrained least squares (LSE)
                     39: *> problem:
                     40: *>
                     41: *>         minimize || c - A*x ||_2   subject to   B*x = d
                     42: *>
                     43: *> where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
                     44: *> M-vector, and d is a given P-vector. It is assumed that
                     45: *> P <= N <= M+P, and
                     46: *>
                     47: *>          rank(B) = P and  rank( (A) ) = N.
                     48: *>                               ( (B) )
                     49: *>
                     50: *> These conditions ensure that the LSE problem has a unique solution,
                     51: *> which is obtained using a generalized RQ factorization of the
                     52: *> matrices (B, A) given by
                     53: *>
                     54: *>    B = (0 R)*Q,   A = Z*T*Q.
                     55: *> \endverbatim
                     56: *
                     57: *  Arguments:
                     58: *  ==========
                     59: *
                     60: *> \param[in] M
                     61: *> \verbatim
                     62: *>          M is INTEGER
                     63: *>          The number of rows of the matrix A.  M >= 0.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] N
                     67: *> \verbatim
                     68: *>          N is INTEGER
                     69: *>          The number of columns of the matrices A and B. N >= 0.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] P
                     73: *> \verbatim
                     74: *>          P is INTEGER
                     75: *>          The number of rows of the matrix B. 0 <= P <= N <= M+P.
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in,out] A
                     79: *> \verbatim
                     80: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     81: *>          On entry, the M-by-N matrix A.
                     82: *>          On exit, the elements on and above the diagonal of the array
                     83: *>          contain the min(M,N)-by-N upper trapezoidal matrix T.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] LDA
                     87: *> \verbatim
                     88: *>          LDA is INTEGER
                     89: *>          The leading dimension of the array A. LDA >= max(1,M).
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in,out] B
                     93: *> \verbatim
                     94: *>          B is COMPLEX*16 array, dimension (LDB,N)
                     95: *>          On entry, the P-by-N matrix B.
                     96: *>          On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
                     97: *>          contains the P-by-P upper triangular matrix R.
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] LDB
                    101: *> \verbatim
                    102: *>          LDB is INTEGER
                    103: *>          The leading dimension of the array B. LDB >= max(1,P).
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in,out] C
                    107: *> \verbatim
                    108: *>          C is COMPLEX*16 array, dimension (M)
                    109: *>          On entry, C contains the right hand side vector for the
                    110: *>          least squares part of the LSE problem.
                    111: *>          On exit, the residual sum of squares for the solution
                    112: *>          is given by the sum of squares of elements N-P+1 to M of
                    113: *>          vector C.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in,out] D
                    117: *> \verbatim
                    118: *>          D is COMPLEX*16 array, dimension (P)
                    119: *>          On entry, D contains the right hand side vector for the
                    120: *>          constrained equation.
                    121: *>          On exit, D is destroyed.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[out] X
                    125: *> \verbatim
                    126: *>          X is COMPLEX*16 array, dimension (N)
                    127: *>          On exit, X is the solution of the LSE problem.
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[out] WORK
                    131: *> \verbatim
                    132: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    133: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[in] LWORK
                    137: *> \verbatim
                    138: *>          LWORK is INTEGER
                    139: *>          The dimension of the array WORK. LWORK >= max(1,M+N+P).
                    140: *>          For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
                    141: *>          where NB is an upper bound for the optimal blocksizes for
                    142: *>          ZGEQRF, CGERQF, ZUNMQR and CUNMRQ.
                    143: *>
                    144: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    145: *>          only calculates the optimal size of the WORK array, returns
                    146: *>          this value as the first entry of the WORK array, and no error
                    147: *>          message related to LWORK is issued by XERBLA.
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[out] INFO
                    151: *> \verbatim
                    152: *>          INFO is INTEGER
                    153: *>          = 0:  successful exit.
                    154: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    155: *>          = 1:  the upper triangular factor R associated with B in the
                    156: *>                generalized RQ factorization of the pair (B, A) is
                    157: *>                singular, so that rank(B) < P; the least squares
                    158: *>                solution could not be computed.
                    159: *>          = 2:  the (N-P) by (N-P) part of the upper trapezoidal factor
                    160: *>                T associated with A in the generalized RQ factorization
                    161: *>                of the pair (B, A) is singular, so that
                    162: *>                rank( (A) ) < N; the least squares solution could not
                    163: *>                    ( (B) )
                    164: *>                be computed.
                    165: *> \endverbatim
                    166: *
                    167: *  Authors:
                    168: *  ========
                    169: *
1.15      bertrand  170: *> \author Univ. of Tennessee
                    171: *> \author Univ. of California Berkeley
                    172: *> \author Univ. of Colorado Denver
                    173: *> \author NAG Ltd.
1.9       bertrand  174: *
1.15      bertrand  175: *> \date December 2016
1.9       bertrand  176: *
                    177: *> \ingroup complex16OTHERsolve
                    178: *
                    179: *  =====================================================================
1.1       bertrand  180:       SUBROUTINE ZGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
                    181:      $                   INFO )
                    182: *
1.15      bertrand  183: *  -- LAPACK driver routine (version 3.7.0) --
1.1       bertrand  184: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    185: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.15      bertrand  186: *     December 2016
1.1       bertrand  187: *
                    188: *     .. Scalar Arguments ..
                    189:       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
                    190: *     ..
                    191: *     .. Array Arguments ..
                    192:       COMPLEX*16         A( LDA, * ), B( LDB, * ), C( * ), D( * ),
                    193:      $                   WORK( * ), X( * )
                    194: *     ..
                    195: *
                    196: *  =====================================================================
                    197: *
                    198: *     .. Parameters ..
                    199:       COMPLEX*16         CONE
                    200:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    201: *     ..
                    202: *     .. Local Scalars ..
                    203:       LOGICAL            LQUERY
                    204:       INTEGER            LOPT, LWKMIN, LWKOPT, MN, NB, NB1, NB2, NB3,
                    205:      $                   NB4, NR
                    206: *     ..
                    207: *     .. External Subroutines ..
                    208:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGGRQF, ZTRMV,
                    209:      $                   ZTRTRS, ZUNMQR, ZUNMRQ
                    210: *     ..
                    211: *     .. External Functions ..
                    212:       INTEGER            ILAENV
                    213:       EXTERNAL           ILAENV
                    214: *     ..
                    215: *     .. Intrinsic Functions ..
                    216:       INTRINSIC          INT, MAX, MIN
                    217: *     ..
                    218: *     .. Executable Statements ..
                    219: *
                    220: *     Test the input parameters
                    221: *
                    222:       INFO = 0
                    223:       MN = MIN( M, N )
                    224:       LQUERY = ( LWORK.EQ.-1 )
                    225:       IF( M.LT.0 ) THEN
                    226:          INFO = -1
                    227:       ELSE IF( N.LT.0 ) THEN
                    228:          INFO = -2
                    229:       ELSE IF( P.LT.0 .OR. P.GT.N .OR. P.LT.N-M ) THEN
                    230:          INFO = -3
                    231:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    232:          INFO = -5
                    233:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
                    234:          INFO = -7
                    235:       END IF
                    236: *
                    237: *     Calculate workspace
                    238: *
                    239:       IF( INFO.EQ.0) THEN
                    240:          IF( N.EQ.0 ) THEN
                    241:             LWKMIN = 1
                    242:             LWKOPT = 1
                    243:          ELSE
                    244:             NB1 = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
                    245:             NB2 = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 )
                    246:             NB3 = ILAENV( 1, 'ZUNMQR', ' ', M, N, P, -1 )
                    247:             NB4 = ILAENV( 1, 'ZUNMRQ', ' ', M, N, P, -1 )
                    248:             NB = MAX( NB1, NB2, NB3, NB4 )
                    249:             LWKMIN = M + N + P
                    250:             LWKOPT = P + MN + MAX( M, N )*NB
                    251:          END IF
                    252:          WORK( 1 ) = LWKOPT
                    253: *
                    254:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
                    255:             INFO = -12
                    256:          END IF
                    257:       END IF
                    258: *
                    259:       IF( INFO.NE.0 ) THEN
                    260:          CALL XERBLA( 'ZGGLSE', -INFO )
                    261:          RETURN
                    262:       ELSE IF( LQUERY ) THEN
                    263:          RETURN
                    264:       END IF
                    265: *
                    266: *     Quick return if possible
                    267: *
                    268:       IF( N.EQ.0 )
                    269:      $   RETURN
                    270: *
                    271: *     Compute the GRQ factorization of matrices B and A:
                    272: *
1.8       bertrand  273: *            B*Q**H = (  0  T12 ) P   Z**H*A*Q**H = ( R11 R12 ) N-P
                    274: *                        N-P  P                     (  0  R22 ) M+P-N
                    275: *                                                      N-P  P
1.1       bertrand  276: *
                    277: *     where T12 and R11 are upper triangular, and Q and Z are
                    278: *     unitary.
                    279: *
                    280:       CALL ZGGRQF( P, M, N, B, LDB, WORK, A, LDA, WORK( P+1 ),
                    281:      $             WORK( P+MN+1 ), LWORK-P-MN, INFO )
                    282:       LOPT = WORK( P+MN+1 )
                    283: *
1.8       bertrand  284: *     Update c = Z**H *c = ( c1 ) N-P
1.1       bertrand  285: *                       ( c2 ) M+P-N
                    286: *
                    287:       CALL ZUNMQR( 'Left', 'Conjugate Transpose', M, 1, MN, A, LDA,
                    288:      $             WORK( P+1 ), C, MAX( 1, M ), WORK( P+MN+1 ),
                    289:      $             LWORK-P-MN, INFO )
                    290:       LOPT = MAX( LOPT, INT( WORK( P+MN+1 ) ) )
                    291: *
                    292: *     Solve T12*x2 = d for x2
                    293: *
                    294:       IF( P.GT.0 ) THEN
                    295:          CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', P, 1,
                    296:      $                B( 1, N-P+1 ), LDB, D, P, INFO )
                    297: *
                    298:          IF( INFO.GT.0 ) THEN
                    299:             INFO = 1
                    300:             RETURN
                    301:          END IF
                    302: *
                    303: *        Put the solution in X
                    304: *
                    305:          CALL ZCOPY( P, D, 1, X( N-P+1 ), 1 )
                    306: *
                    307: *        Update c1
                    308: *
                    309:          CALL ZGEMV( 'No transpose', N-P, P, -CONE, A( 1, N-P+1 ), LDA,
                    310:      $               D, 1, CONE, C, 1 )
                    311:       END IF
                    312: *
                    313: *     Solve R11*x1 = c1 for x1
                    314: *
                    315:       IF( N.GT.P ) THEN
                    316:          CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', N-P, 1,
                    317:      $                A, LDA, C, N-P, INFO )
                    318: *
                    319:          IF( INFO.GT.0 ) THEN
                    320:             INFO = 2
                    321:             RETURN
                    322:          END IF
                    323: *
                    324: *        Put the solutions in X
                    325: *
                    326:          CALL ZCOPY( N-P, C, 1, X, 1 )
                    327:       END IF
                    328: *
                    329: *     Compute the residual vector:
                    330: *
                    331:       IF( M.LT.N ) THEN
                    332:          NR = M + P - N
                    333:          IF( NR.GT.0 )
                    334:      $      CALL ZGEMV( 'No transpose', NR, N-M, -CONE, A( N-P+1, M+1 ),
                    335:      $                  LDA, D( NR+1 ), 1, CONE, C( N-P+1 ), 1 )
                    336:       ELSE
                    337:          NR = P
                    338:       END IF
                    339:       IF( NR.GT.0 ) THEN
                    340:          CALL ZTRMV( 'Upper', 'No transpose', 'Non unit', NR,
                    341:      $               A( N-P+1, N-P+1 ), LDA, D, 1 )
                    342:          CALL ZAXPY( NR, -CONE, D, 1, C( N-P+1 ), 1 )
                    343:       END IF
                    344: *
1.8       bertrand  345: *     Backward transformation x = Q**H*x
1.1       bertrand  346: *
                    347:       CALL ZUNMRQ( 'Left', 'Conjugate Transpose', N, 1, P, B, LDB,
                    348:      $             WORK( 1 ), X, N, WORK( P+MN+1 ), LWORK-P-MN, INFO )
                    349:       WORK( 1 ) = P + MN + MAX( LOPT, INT( WORK( P+MN+1 ) ) )
                    350: *
                    351:       RETURN
                    352: *
                    353: *     End of ZGGLSE
                    354: *
                    355:       END

CVSweb interface <joel.bertrand@systella.fr>