Annotation of rpl/lapack/lapack/zgghrd.f, revision 1.10

1.8       bertrand    1: *> \brief \b ZGGHRD
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZGGHRD + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgghrd.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgghrd.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgghrd.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
                     22: *                          LDQ, Z, LDZ, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          COMPQ, COMPZ
                     26: *       INTEGER            IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                     30: *      $                   Z( LDZ, * )
                     31: *       ..
                     32: *  
                     33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> ZGGHRD reduces a pair of complex matrices (A,B) to generalized upper
                     40: *> Hessenberg form using unitary transformations, where A is a
                     41: *> general matrix and B is upper triangular.  The form of the
                     42: *> generalized eigenvalue problem is
                     43: *>    A*x = lambda*B*x,
                     44: *> and B is typically made upper triangular by computing its QR
                     45: *> factorization and moving the unitary matrix Q to the left side
                     46: *> of the equation.
                     47: *>
                     48: *> This subroutine simultaneously reduces A to a Hessenberg matrix H:
                     49: *>    Q**H*A*Z = H
                     50: *> and transforms B to another upper triangular matrix T:
                     51: *>    Q**H*B*Z = T
                     52: *> in order to reduce the problem to its standard form
                     53: *>    H*y = lambda*T*y
                     54: *> where y = Z**H*x.
                     55: *>
                     56: *> The unitary matrices Q and Z are determined as products of Givens
                     57: *> rotations.  They may either be formed explicitly, or they may be
                     58: *> postmultiplied into input matrices Q1 and Z1, so that
                     59: *>      Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H
                     60: *>      Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H
                     61: *> If Q1 is the unitary matrix from the QR factorization of B in the
                     62: *> original equation A*x = lambda*B*x, then ZGGHRD reduces the original
                     63: *> problem to generalized Hessenberg form.
                     64: *> \endverbatim
                     65: *
                     66: *  Arguments:
                     67: *  ==========
                     68: *
                     69: *> \param[in] COMPQ
                     70: *> \verbatim
                     71: *>          COMPQ is CHARACTER*1
                     72: *>          = 'N': do not compute Q;
                     73: *>          = 'I': Q is initialized to the unit matrix, and the
                     74: *>                 unitary matrix Q is returned;
                     75: *>          = 'V': Q must contain a unitary matrix Q1 on entry,
                     76: *>                 and the product Q1*Q is returned.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in] COMPZ
                     80: *> \verbatim
                     81: *>          COMPZ is CHARACTER*1
                     82: *>          = 'N': do not compute Q;
                     83: *>          = 'I': Q is initialized to the unit matrix, and the
                     84: *>                 unitary matrix Q is returned;
                     85: *>          = 'V': Q must contain a unitary matrix Q1 on entry,
                     86: *>                 and the product Q1*Q is returned.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] N
                     90: *> \verbatim
                     91: *>          N is INTEGER
                     92: *>          The order of the matrices A and B.  N >= 0.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] ILO
                     96: *> \verbatim
                     97: *>          ILO is INTEGER
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] IHI
                    101: *> \verbatim
                    102: *>          IHI is INTEGER
                    103: *>
                    104: *>          ILO and IHI mark the rows and columns of A which are to be
                    105: *>          reduced.  It is assumed that A is already upper triangular
                    106: *>          in rows and columns 1:ILO-1 and IHI+1:N.  ILO and IHI are
                    107: *>          normally set by a previous call to ZGGBAL; otherwise they
                    108: *>          should be set to 1 and N respectively.
                    109: *>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in,out] A
                    113: *> \verbatim
                    114: *>          A is COMPLEX*16 array, dimension (LDA, N)
                    115: *>          On entry, the N-by-N general matrix to be reduced.
                    116: *>          On exit, the upper triangle and the first subdiagonal of A
                    117: *>          are overwritten with the upper Hessenberg matrix H, and the
                    118: *>          rest is set to zero.
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in] LDA
                    122: *> \verbatim
                    123: *>          LDA is INTEGER
                    124: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[in,out] B
                    128: *> \verbatim
                    129: *>          B is COMPLEX*16 array, dimension (LDB, N)
                    130: *>          On entry, the N-by-N upper triangular matrix B.
                    131: *>          On exit, the upper triangular matrix T = Q**H B Z.  The
                    132: *>          elements below the diagonal are set to zero.
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[in] LDB
                    136: *> \verbatim
                    137: *>          LDB is INTEGER
                    138: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    139: *> \endverbatim
                    140: *>
                    141: *> \param[in,out] Q
                    142: *> \verbatim
                    143: *>          Q is COMPLEX*16 array, dimension (LDQ, N)
                    144: *>          On entry, if COMPQ = 'V', the unitary matrix Q1, typically
                    145: *>          from the QR factorization of B.
                    146: *>          On exit, if COMPQ='I', the unitary matrix Q, and if
                    147: *>          COMPQ = 'V', the product Q1*Q.
                    148: *>          Not referenced if COMPQ='N'.
                    149: *> \endverbatim
                    150: *>
                    151: *> \param[in] LDQ
                    152: *> \verbatim
                    153: *>          LDQ is INTEGER
                    154: *>          The leading dimension of the array Q.
                    155: *>          LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[in,out] Z
                    159: *> \verbatim
                    160: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
                    161: *>          On entry, if COMPZ = 'V', the unitary matrix Z1.
                    162: *>          On exit, if COMPZ='I', the unitary matrix Z, and if
                    163: *>          COMPZ = 'V', the product Z1*Z.
                    164: *>          Not referenced if COMPZ='N'.
                    165: *> \endverbatim
                    166: *>
                    167: *> \param[in] LDZ
                    168: *> \verbatim
                    169: *>          LDZ is INTEGER
                    170: *>          The leading dimension of the array Z.
                    171: *>          LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
                    172: *> \endverbatim
                    173: *>
                    174: *> \param[out] INFO
                    175: *> \verbatim
                    176: *>          INFO is INTEGER
                    177: *>          = 0:  successful exit.
                    178: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    179: *> \endverbatim
                    180: *
                    181: *  Authors:
                    182: *  ========
                    183: *
                    184: *> \author Univ. of Tennessee 
                    185: *> \author Univ. of California Berkeley 
                    186: *> \author Univ. of Colorado Denver 
                    187: *> \author NAG Ltd. 
                    188: *
                    189: *> \date November 2011
                    190: *
                    191: *> \ingroup complex16OTHERcomputational
                    192: *
                    193: *> \par Further Details:
                    194: *  =====================
                    195: *>
                    196: *> \verbatim
                    197: *>
                    198: *>  This routine reduces A to Hessenberg and B to triangular form by
                    199: *>  an unblocked reduction, as described in _Matrix_Computations_,
                    200: *>  by Golub and van Loan (Johns Hopkins Press).
                    201: *> \endverbatim
                    202: *>
                    203: *  =====================================================================
1.1       bertrand  204:       SUBROUTINE ZGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
                    205:      $                   LDQ, Z, LDZ, INFO )
                    206: *
1.8       bertrand  207: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  208: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    209: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8       bertrand  210: *     November 2011
1.1       bertrand  211: *
                    212: *     .. Scalar Arguments ..
                    213:       CHARACTER          COMPQ, COMPZ
                    214:       INTEGER            IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N
                    215: *     ..
                    216: *     .. Array Arguments ..
                    217:       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                    218:      $                   Z( LDZ, * )
                    219: *     ..
                    220: *
                    221: *  =====================================================================
                    222: *
                    223: *     .. Parameters ..
                    224:       COMPLEX*16         CONE, CZERO
                    225:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
                    226:      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
                    227: *     ..
                    228: *     .. Local Scalars ..
                    229:       LOGICAL            ILQ, ILZ
                    230:       INTEGER            ICOMPQ, ICOMPZ, JCOL, JROW
                    231:       DOUBLE PRECISION   C
                    232:       COMPLEX*16         CTEMP, S
                    233: *     ..
                    234: *     .. External Functions ..
                    235:       LOGICAL            LSAME
                    236:       EXTERNAL           LSAME
                    237: *     ..
                    238: *     .. External Subroutines ..
                    239:       EXTERNAL           XERBLA, ZLARTG, ZLASET, ZROT
                    240: *     ..
                    241: *     .. Intrinsic Functions ..
                    242:       INTRINSIC          DCONJG, MAX
                    243: *     ..
                    244: *     .. Executable Statements ..
                    245: *
                    246: *     Decode COMPQ
                    247: *
                    248:       IF( LSAME( COMPQ, 'N' ) ) THEN
                    249:          ILQ = .FALSE.
                    250:          ICOMPQ = 1
                    251:       ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
                    252:          ILQ = .TRUE.
                    253:          ICOMPQ = 2
                    254:       ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
                    255:          ILQ = .TRUE.
                    256:          ICOMPQ = 3
                    257:       ELSE
                    258:          ICOMPQ = 0
                    259:       END IF
                    260: *
                    261: *     Decode COMPZ
                    262: *
                    263:       IF( LSAME( COMPZ, 'N' ) ) THEN
                    264:          ILZ = .FALSE.
                    265:          ICOMPZ = 1
                    266:       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
                    267:          ILZ = .TRUE.
                    268:          ICOMPZ = 2
                    269:       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
                    270:          ILZ = .TRUE.
                    271:          ICOMPZ = 3
                    272:       ELSE
                    273:          ICOMPZ = 0
                    274:       END IF
                    275: *
                    276: *     Test the input parameters.
                    277: *
                    278:       INFO = 0
                    279:       IF( ICOMPQ.LE.0 ) THEN
                    280:          INFO = -1
                    281:       ELSE IF( ICOMPZ.LE.0 ) THEN
                    282:          INFO = -2
                    283:       ELSE IF( N.LT.0 ) THEN
                    284:          INFO = -3
                    285:       ELSE IF( ILO.LT.1 ) THEN
                    286:          INFO = -4
                    287:       ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
                    288:          INFO = -5
                    289:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    290:          INFO = -7
                    291:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    292:          INFO = -9
                    293:       ELSE IF( ( ILQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
                    294:          INFO = -11
                    295:       ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
                    296:          INFO = -13
                    297:       END IF
                    298:       IF( INFO.NE.0 ) THEN
                    299:          CALL XERBLA( 'ZGGHRD', -INFO )
                    300:          RETURN
                    301:       END IF
                    302: *
                    303: *     Initialize Q and Z if desired.
                    304: *
                    305:       IF( ICOMPQ.EQ.3 )
                    306:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
                    307:       IF( ICOMPZ.EQ.3 )
                    308:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )
                    309: *
                    310: *     Quick return if possible
                    311: *
                    312:       IF( N.LE.1 )
                    313:      $   RETURN
                    314: *
                    315: *     Zero out lower triangle of B
                    316: *
                    317:       DO 20 JCOL = 1, N - 1
                    318:          DO 10 JROW = JCOL + 1, N
                    319:             B( JROW, JCOL ) = CZERO
                    320:    10    CONTINUE
                    321:    20 CONTINUE
                    322: *
                    323: *     Reduce A and B
                    324: *
                    325:       DO 40 JCOL = ILO, IHI - 2
                    326: *
                    327:          DO 30 JROW = IHI, JCOL + 2, -1
                    328: *
                    329: *           Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL)
                    330: *
                    331:             CTEMP = A( JROW-1, JCOL )
                    332:             CALL ZLARTG( CTEMP, A( JROW, JCOL ), C, S,
                    333:      $                   A( JROW-1, JCOL ) )
                    334:             A( JROW, JCOL ) = CZERO
                    335:             CALL ZROT( N-JCOL, A( JROW-1, JCOL+1 ), LDA,
                    336:      $                 A( JROW, JCOL+1 ), LDA, C, S )
                    337:             CALL ZROT( N+2-JROW, B( JROW-1, JROW-1 ), LDB,
                    338:      $                 B( JROW, JROW-1 ), LDB, C, S )
                    339:             IF( ILQ )
                    340:      $         CALL ZROT( N, Q( 1, JROW-1 ), 1, Q( 1, JROW ), 1, C,
                    341:      $                    DCONJG( S ) )
                    342: *
                    343: *           Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1)
                    344: *
                    345:             CTEMP = B( JROW, JROW )
                    346:             CALL ZLARTG( CTEMP, B( JROW, JROW-1 ), C, S,
                    347:      $                   B( JROW, JROW ) )
                    348:             B( JROW, JROW-1 ) = CZERO
                    349:             CALL ZROT( IHI, A( 1, JROW ), 1, A( 1, JROW-1 ), 1, C, S )
                    350:             CALL ZROT( JROW-1, B( 1, JROW ), 1, B( 1, JROW-1 ), 1, C,
                    351:      $                 S )
                    352:             IF( ILZ )
                    353:      $         CALL ZROT( N, Z( 1, JROW ), 1, Z( 1, JROW-1 ), 1, C, S )
                    354:    30    CONTINUE
                    355:    40 CONTINUE
                    356: *
                    357:       RETURN
                    358: *
                    359: *     End of ZGGHRD
                    360: *
                    361:       END

CVSweb interface <joel.bertrand@systella.fr>