Annotation of rpl/lapack/lapack/zgghrd.f, revision 1.1.1.1

1.1       bertrand    1:       SUBROUTINE ZGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
                      2:      $                   LDQ, Z, LDZ, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          COMPQ, COMPZ
                     11:       INTEGER            IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                     15:      $                   Z( LDZ, * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  ZGGHRD reduces a pair of complex matrices (A,B) to generalized upper
                     22: *  Hessenberg form using unitary transformations, where A is a
                     23: *  general matrix and B is upper triangular.  The form of the
                     24: *  generalized eigenvalue problem is
                     25: *     A*x = lambda*B*x,
                     26: *  and B is typically made upper triangular by computing its QR
                     27: *  factorization and moving the unitary matrix Q to the left side
                     28: *  of the equation.
                     29: *
                     30: *  This subroutine simultaneously reduces A to a Hessenberg matrix H:
                     31: *     Q**H*A*Z = H
                     32: *  and transforms B to another upper triangular matrix T:
                     33: *     Q**H*B*Z = T
                     34: *  in order to reduce the problem to its standard form
                     35: *     H*y = lambda*T*y
                     36: *  where y = Z**H*x.
                     37: *
                     38: *  The unitary matrices Q and Z are determined as products of Givens
                     39: *  rotations.  They may either be formed explicitly, or they may be
                     40: *  postmultiplied into input matrices Q1 and Z1, so that
                     41: *       Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H
                     42: *       Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H
                     43: *  If Q1 is the unitary matrix from the QR factorization of B in the
                     44: *  original equation A*x = lambda*B*x, then ZGGHRD reduces the original
                     45: *  problem to generalized Hessenberg form.
                     46: *
                     47: *  Arguments
                     48: *  =========
                     49: *
                     50: *  COMPQ   (input) CHARACTER*1
                     51: *          = 'N': do not compute Q;
                     52: *          = 'I': Q is initialized to the unit matrix, and the
                     53: *                 unitary matrix Q is returned;
                     54: *          = 'V': Q must contain a unitary matrix Q1 on entry,
                     55: *                 and the product Q1*Q is returned.
                     56: *
                     57: *  COMPZ   (input) CHARACTER*1
                     58: *          = 'N': do not compute Q;
                     59: *          = 'I': Q is initialized to the unit matrix, and the
                     60: *                 unitary matrix Q is returned;
                     61: *          = 'V': Q must contain a unitary matrix Q1 on entry,
                     62: *                 and the product Q1*Q is returned.
                     63: *
                     64: *  N       (input) INTEGER
                     65: *          The order of the matrices A and B.  N >= 0.
                     66: *
                     67: *  ILO     (input) INTEGER
                     68: *  IHI     (input) INTEGER
                     69: *          ILO and IHI mark the rows and columns of A which are to be
                     70: *          reduced.  It is assumed that A is already upper triangular
                     71: *          in rows and columns 1:ILO-1 and IHI+1:N.  ILO and IHI are
                     72: *          normally set by a previous call to ZGGBAL; otherwise they
                     73: *          should be set to 1 and N respectively.
                     74: *          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
                     75: *
                     76: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
                     77: *          On entry, the N-by-N general matrix to be reduced.
                     78: *          On exit, the upper triangle and the first subdiagonal of A
                     79: *          are overwritten with the upper Hessenberg matrix H, and the
                     80: *          rest is set to zero.
                     81: *
                     82: *  LDA     (input) INTEGER
                     83: *          The leading dimension of the array A.  LDA >= max(1,N).
                     84: *
                     85: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
                     86: *          On entry, the N-by-N upper triangular matrix B.
                     87: *          On exit, the upper triangular matrix T = Q**H B Z.  The
                     88: *          elements below the diagonal are set to zero.
                     89: *
                     90: *  LDB     (input) INTEGER
                     91: *          The leading dimension of the array B.  LDB >= max(1,N).
                     92: *
                     93: *  Q       (input/output) COMPLEX*16 array, dimension (LDQ, N)
                     94: *          On entry, if COMPQ = 'V', the unitary matrix Q1, typically
                     95: *          from the QR factorization of B.
                     96: *          On exit, if COMPQ='I', the unitary matrix Q, and if
                     97: *          COMPQ = 'V', the product Q1*Q.
                     98: *          Not referenced if COMPQ='N'.
                     99: *
                    100: *  LDQ     (input) INTEGER
                    101: *          The leading dimension of the array Q.
                    102: *          LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
                    103: *
                    104: *  Z       (input/output) COMPLEX*16 array, dimension (LDZ, N)
                    105: *          On entry, if COMPZ = 'V', the unitary matrix Z1.
                    106: *          On exit, if COMPZ='I', the unitary matrix Z, and if
                    107: *          COMPZ = 'V', the product Z1*Z.
                    108: *          Not referenced if COMPZ='N'.
                    109: *
                    110: *  LDZ     (input) INTEGER
                    111: *          The leading dimension of the array Z.
                    112: *          LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
                    113: *
                    114: *  INFO    (output) INTEGER
                    115: *          = 0:  successful exit.
                    116: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    117: *
                    118: *  Further Details
                    119: *  ===============
                    120: *
                    121: *  This routine reduces A to Hessenberg and B to triangular form by
                    122: *  an unblocked reduction, as described in _Matrix_Computations_,
                    123: *  by Golub and van Loan (Johns Hopkins Press).
                    124: *
                    125: *  =====================================================================
                    126: *
                    127: *     .. Parameters ..
                    128:       COMPLEX*16         CONE, CZERO
                    129:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
                    130:      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
                    131: *     ..
                    132: *     .. Local Scalars ..
                    133:       LOGICAL            ILQ, ILZ
                    134:       INTEGER            ICOMPQ, ICOMPZ, JCOL, JROW
                    135:       DOUBLE PRECISION   C
                    136:       COMPLEX*16         CTEMP, S
                    137: *     ..
                    138: *     .. External Functions ..
                    139:       LOGICAL            LSAME
                    140:       EXTERNAL           LSAME
                    141: *     ..
                    142: *     .. External Subroutines ..
                    143:       EXTERNAL           XERBLA, ZLARTG, ZLASET, ZROT
                    144: *     ..
                    145: *     .. Intrinsic Functions ..
                    146:       INTRINSIC          DCONJG, MAX
                    147: *     ..
                    148: *     .. Executable Statements ..
                    149: *
                    150: *     Decode COMPQ
                    151: *
                    152:       IF( LSAME( COMPQ, 'N' ) ) THEN
                    153:          ILQ = .FALSE.
                    154:          ICOMPQ = 1
                    155:       ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
                    156:          ILQ = .TRUE.
                    157:          ICOMPQ = 2
                    158:       ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
                    159:          ILQ = .TRUE.
                    160:          ICOMPQ = 3
                    161:       ELSE
                    162:          ICOMPQ = 0
                    163:       END IF
                    164: *
                    165: *     Decode COMPZ
                    166: *
                    167:       IF( LSAME( COMPZ, 'N' ) ) THEN
                    168:          ILZ = .FALSE.
                    169:          ICOMPZ = 1
                    170:       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
                    171:          ILZ = .TRUE.
                    172:          ICOMPZ = 2
                    173:       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
                    174:          ILZ = .TRUE.
                    175:          ICOMPZ = 3
                    176:       ELSE
                    177:          ICOMPZ = 0
                    178:       END IF
                    179: *
                    180: *     Test the input parameters.
                    181: *
                    182:       INFO = 0
                    183:       IF( ICOMPQ.LE.0 ) THEN
                    184:          INFO = -1
                    185:       ELSE IF( ICOMPZ.LE.0 ) THEN
                    186:          INFO = -2
                    187:       ELSE IF( N.LT.0 ) THEN
                    188:          INFO = -3
                    189:       ELSE IF( ILO.LT.1 ) THEN
                    190:          INFO = -4
                    191:       ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
                    192:          INFO = -5
                    193:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    194:          INFO = -7
                    195:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    196:          INFO = -9
                    197:       ELSE IF( ( ILQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
                    198:          INFO = -11
                    199:       ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
                    200:          INFO = -13
                    201:       END IF
                    202:       IF( INFO.NE.0 ) THEN
                    203:          CALL XERBLA( 'ZGGHRD', -INFO )
                    204:          RETURN
                    205:       END IF
                    206: *
                    207: *     Initialize Q and Z if desired.
                    208: *
                    209:       IF( ICOMPQ.EQ.3 )
                    210:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
                    211:       IF( ICOMPZ.EQ.3 )
                    212:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )
                    213: *
                    214: *     Quick return if possible
                    215: *
                    216:       IF( N.LE.1 )
                    217:      $   RETURN
                    218: *
                    219: *     Zero out lower triangle of B
                    220: *
                    221:       DO 20 JCOL = 1, N - 1
                    222:          DO 10 JROW = JCOL + 1, N
                    223:             B( JROW, JCOL ) = CZERO
                    224:    10    CONTINUE
                    225:    20 CONTINUE
                    226: *
                    227: *     Reduce A and B
                    228: *
                    229:       DO 40 JCOL = ILO, IHI - 2
                    230: *
                    231:          DO 30 JROW = IHI, JCOL + 2, -1
                    232: *
                    233: *           Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL)
                    234: *
                    235:             CTEMP = A( JROW-1, JCOL )
                    236:             CALL ZLARTG( CTEMP, A( JROW, JCOL ), C, S,
                    237:      $                   A( JROW-1, JCOL ) )
                    238:             A( JROW, JCOL ) = CZERO
                    239:             CALL ZROT( N-JCOL, A( JROW-1, JCOL+1 ), LDA,
                    240:      $                 A( JROW, JCOL+1 ), LDA, C, S )
                    241:             CALL ZROT( N+2-JROW, B( JROW-1, JROW-1 ), LDB,
                    242:      $                 B( JROW, JROW-1 ), LDB, C, S )
                    243:             IF( ILQ )
                    244:      $         CALL ZROT( N, Q( 1, JROW-1 ), 1, Q( 1, JROW ), 1, C,
                    245:      $                    DCONJG( S ) )
                    246: *
                    247: *           Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1)
                    248: *
                    249:             CTEMP = B( JROW, JROW )
                    250:             CALL ZLARTG( CTEMP, B( JROW, JROW-1 ), C, S,
                    251:      $                   B( JROW, JROW ) )
                    252:             B( JROW, JROW-1 ) = CZERO
                    253:             CALL ZROT( IHI, A( 1, JROW ), 1, A( 1, JROW-1 ), 1, C, S )
                    254:             CALL ZROT( JROW-1, B( 1, JROW ), 1, B( 1, JROW-1 ), 1, C,
                    255:      $                 S )
                    256:             IF( ILZ )
                    257:      $         CALL ZROT( N, Z( 1, JROW ), 1, Z( 1, JROW-1 ), 1, C, S )
                    258:    30    CONTINUE
                    259:    40 CONTINUE
                    260: *
                    261:       RETURN
                    262: *
                    263: *     End of ZGGHRD
                    264: *
                    265:       END

CVSweb interface <joel.bertrand@systella.fr>