Annotation of rpl/lapack/lapack/zggglm.f, revision 1.9

1.9     ! bertrand    1: *> \brief <b> ZGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZGGGLM + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggglm.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggglm.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggglm.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
        !            22: *                          INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
        !            26: *       ..
        !            27: *       .. Array Arguments ..
        !            28: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
        !            29: *      $                   X( * ), Y( * )
        !            30: *       ..
        !            31: *  
        !            32: *
        !            33: *> \par Purpose:
        !            34: *  =============
        !            35: *>
        !            36: *> \verbatim
        !            37: *>
        !            38: *> ZGGGLM solves a general Gauss-Markov linear model (GLM) problem:
        !            39: *>
        !            40: *>         minimize || y ||_2   subject to   d = A*x + B*y
        !            41: *>             x
        !            42: *>
        !            43: *> where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
        !            44: *> given N-vector. It is assumed that M <= N <= M+P, and
        !            45: *>
        !            46: *>            rank(A) = M    and    rank( A B ) = N.
        !            47: *>
        !            48: *> Under these assumptions, the constrained equation is always
        !            49: *> consistent, and there is a unique solution x and a minimal 2-norm
        !            50: *> solution y, which is obtained using a generalized QR factorization
        !            51: *> of the matrices (A, B) given by
        !            52: *>
        !            53: *>    A = Q*(R),   B = Q*T*Z.
        !            54: *>          (0)
        !            55: *>
        !            56: *> In particular, if matrix B is square nonsingular, then the problem
        !            57: *> GLM is equivalent to the following weighted linear least squares
        !            58: *> problem
        !            59: *>
        !            60: *>              minimize || inv(B)*(d-A*x) ||_2
        !            61: *>                  x
        !            62: *>
        !            63: *> where inv(B) denotes the inverse of B.
        !            64: *> \endverbatim
        !            65: *
        !            66: *  Arguments:
        !            67: *  ==========
        !            68: *
        !            69: *> \param[in] N
        !            70: *> \verbatim
        !            71: *>          N is INTEGER
        !            72: *>          The number of rows of the matrices A and B.  N >= 0.
        !            73: *> \endverbatim
        !            74: *>
        !            75: *> \param[in] M
        !            76: *> \verbatim
        !            77: *>          M is INTEGER
        !            78: *>          The number of columns of the matrix A.  0 <= M <= N.
        !            79: *> \endverbatim
        !            80: *>
        !            81: *> \param[in] P
        !            82: *> \verbatim
        !            83: *>          P is INTEGER
        !            84: *>          The number of columns of the matrix B.  P >= N-M.
        !            85: *> \endverbatim
        !            86: *>
        !            87: *> \param[in,out] A
        !            88: *> \verbatim
        !            89: *>          A is COMPLEX*16 array, dimension (LDA,M)
        !            90: *>          On entry, the N-by-M matrix A.
        !            91: *>          On exit, the upper triangular part of the array A contains
        !            92: *>          the M-by-M upper triangular matrix R.
        !            93: *> \endverbatim
        !            94: *>
        !            95: *> \param[in] LDA
        !            96: *> \verbatim
        !            97: *>          LDA is INTEGER
        !            98: *>          The leading dimension of the array A. LDA >= max(1,N).
        !            99: *> \endverbatim
        !           100: *>
        !           101: *> \param[in,out] B
        !           102: *> \verbatim
        !           103: *>          B is COMPLEX*16 array, dimension (LDB,P)
        !           104: *>          On entry, the N-by-P matrix B.
        !           105: *>          On exit, if N <= P, the upper triangle of the subarray
        !           106: *>          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
        !           107: *>          if N > P, the elements on and above the (N-P)th subdiagonal
        !           108: *>          contain the N-by-P upper trapezoidal matrix T.
        !           109: *> \endverbatim
        !           110: *>
        !           111: *> \param[in] LDB
        !           112: *> \verbatim
        !           113: *>          LDB is INTEGER
        !           114: *>          The leading dimension of the array B. LDB >= max(1,N).
        !           115: *> \endverbatim
        !           116: *>
        !           117: *> \param[in,out] D
        !           118: *> \verbatim
        !           119: *>          D is COMPLEX*16 array, dimension (N)
        !           120: *>          On entry, D is the left hand side of the GLM equation.
        !           121: *>          On exit, D is destroyed.
        !           122: *> \endverbatim
        !           123: *>
        !           124: *> \param[out] X
        !           125: *> \verbatim
        !           126: *>          X is COMPLEX*16 array, dimension (M)
        !           127: *> \endverbatim
        !           128: *>
        !           129: *> \param[out] Y
        !           130: *> \verbatim
        !           131: *>          Y is COMPLEX*16 array, dimension (P)
        !           132: *>
        !           133: *>          On exit, X and Y are the solutions of the GLM problem.
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[out] WORK
        !           137: *> \verbatim
        !           138: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           139: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           140: *> \endverbatim
        !           141: *>
        !           142: *> \param[in] LWORK
        !           143: *> \verbatim
        !           144: *>          LWORK is INTEGER
        !           145: *>          The dimension of the array WORK. LWORK >= max(1,N+M+P).
        !           146: *>          For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
        !           147: *>          where NB is an upper bound for the optimal blocksizes for
        !           148: *>          ZGEQRF, ZGERQF, ZUNMQR and ZUNMRQ.
        !           149: *>
        !           150: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           151: *>          only calculates the optimal size of the WORK array, returns
        !           152: *>          this value as the first entry of the WORK array, and no error
        !           153: *>          message related to LWORK is issued by XERBLA.
        !           154: *> \endverbatim
        !           155: *>
        !           156: *> \param[out] INFO
        !           157: *> \verbatim
        !           158: *>          INFO is INTEGER
        !           159: *>          = 0:  successful exit.
        !           160: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           161: *>          = 1:  the upper triangular factor R associated with A in the
        !           162: *>                generalized QR factorization of the pair (A, B) is
        !           163: *>                singular, so that rank(A) < M; the least squares
        !           164: *>                solution could not be computed.
        !           165: *>          = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal
        !           166: *>                factor T associated with B in the generalized QR
        !           167: *>                factorization of the pair (A, B) is singular, so that
        !           168: *>                rank( A B ) < N; the least squares solution could not
        !           169: *>                be computed.
        !           170: *> \endverbatim
        !           171: *
        !           172: *  Authors:
        !           173: *  ========
        !           174: *
        !           175: *> \author Univ. of Tennessee 
        !           176: *> \author Univ. of California Berkeley 
        !           177: *> \author Univ. of Colorado Denver 
        !           178: *> \author NAG Ltd. 
        !           179: *
        !           180: *> \date November 2011
        !           181: *
        !           182: *> \ingroup complex16OTHEReigen
        !           183: *
        !           184: *  =====================================================================
1.1       bertrand  185:       SUBROUTINE ZGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
                    186:      $                   INFO )
                    187: *
1.9     ! bertrand  188: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  189: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    190: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  191: *     November 2011
1.1       bertrand  192: *
                    193: *     .. Scalar Arguments ..
                    194:       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
                    195: *     ..
                    196: *     .. Array Arguments ..
                    197:       COMPLEX*16         A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
                    198:      $                   X( * ), Y( * )
                    199: *     ..
                    200: *
                    201: *  ===================================================================
                    202: *
                    203: *     .. Parameters ..
                    204:       COMPLEX*16         CZERO, CONE
                    205:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    206:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    207: *     ..
                    208: *     .. Local Scalars ..
                    209:       LOGICAL            LQUERY
                    210:       INTEGER            I, LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3,
                    211:      $                   NB4, NP
                    212: *     ..
                    213: *     .. External Subroutines ..
                    214:       EXTERNAL           XERBLA, ZCOPY, ZGEMV, ZGGQRF, ZTRTRS, ZUNMQR,
                    215:      $                   ZUNMRQ
                    216: *     ..
                    217: *     .. External Functions ..
                    218:       INTEGER            ILAENV
                    219:       EXTERNAL           ILAENV 
                    220: *     ..
                    221: *     .. Intrinsic Functions ..
                    222:       INTRINSIC          INT, MAX, MIN
                    223: *     ..
                    224: *     .. Executable Statements ..
                    225: *
                    226: *     Test the input parameters
                    227: *
                    228:       INFO = 0
                    229:       NP = MIN( N, P )
                    230:       LQUERY = ( LWORK.EQ.-1 )
                    231:       IF( N.LT.0 ) THEN
                    232:          INFO = -1
                    233:       ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
                    234:          INFO = -2
                    235:       ELSE IF( P.LT.0 .OR. P.LT.N-M ) THEN
                    236:          INFO = -3
                    237:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    238:          INFO = -5
                    239:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    240:          INFO = -7
                    241:       END IF
                    242: *
                    243: *     Calculate workspace
                    244: *
                    245:       IF( INFO.EQ.0) THEN
                    246:          IF( N.EQ.0 ) THEN
                    247:             LWKMIN = 1
                    248:             LWKOPT = 1
                    249:          ELSE
                    250:             NB1 = ILAENV( 1, 'ZGEQRF', ' ', N, M, -1, -1 )
                    251:             NB2 = ILAENV( 1, 'ZGERQF', ' ', N, M, -1, -1 )
                    252:             NB3 = ILAENV( 1, 'ZUNMQR', ' ', N, M, P, -1 )
                    253:             NB4 = ILAENV( 1, 'ZUNMRQ', ' ', N, M, P, -1 )
                    254:             NB = MAX( NB1, NB2, NB3, NB4 )
                    255:             LWKMIN = M + N + P
                    256:             LWKOPT = M + NP + MAX( N, P )*NB
                    257:          END IF
                    258:          WORK( 1 ) = LWKOPT
                    259: *
                    260:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
                    261:             INFO = -12
                    262:          END IF
                    263:       END IF
                    264: *
                    265:       IF( INFO.NE.0 ) THEN
                    266:          CALL XERBLA( 'ZGGGLM', -INFO )
                    267:          RETURN
                    268:       ELSE IF( LQUERY ) THEN
                    269:          RETURN
                    270:       END IF
                    271: *
                    272: *     Quick return if possible
                    273: *
                    274:       IF( N.EQ.0 )
                    275:      $   RETURN
                    276: *
                    277: *     Compute the GQR factorization of matrices A and B:
                    278: *
1.8       bertrand  279: *          Q**H*A = ( R11 ) M,    Q**H*B*Z**H = ( T11   T12 ) M
                    280: *                   (  0  ) N-M                 (  0    T22 ) N-M
                    281: *                      M                         M+P-N  N-M
1.1       bertrand  282: *
                    283: *     where R11 and T22 are upper triangular, and Q and Z are
                    284: *     unitary.
                    285: *
                    286:       CALL ZGGQRF( N, M, P, A, LDA, WORK, B, LDB, WORK( M+1 ),
                    287:      $             WORK( M+NP+1 ), LWORK-M-NP, INFO )
                    288:       LOPT = WORK( M+NP+1 )
                    289: *
1.8       bertrand  290: *     Update left-hand-side vector d = Q**H*d = ( d1 ) M
                    291: *                                               ( d2 ) N-M
1.1       bertrand  292: *
                    293:       CALL ZUNMQR( 'Left', 'Conjugate transpose', N, 1, M, A, LDA, WORK,
                    294:      $             D, MAX( 1, N ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
                    295:       LOPT = MAX( LOPT, INT( WORK( M+NP+1 ) ) )
                    296: *
                    297: *     Solve T22*y2 = d2 for y2
                    298: *
                    299:       IF( N.GT.M ) THEN
                    300:          CALL ZTRTRS( 'Upper', 'No transpose', 'Non unit', N-M, 1,
                    301:      $                B( M+1, M+P-N+1 ), LDB, D( M+1 ), N-M, INFO )
                    302: *
                    303:          IF( INFO.GT.0 ) THEN
                    304:             INFO = 1
                    305:             RETURN
                    306:          END IF
                    307: *
                    308:          CALL ZCOPY( N-M, D( M+1 ), 1, Y( M+P-N+1 ), 1 )
                    309:       END IF
                    310: *
                    311: *     Set y1 = 0
                    312: *
                    313:       DO 10 I = 1, M + P - N
                    314:          Y( I ) = CZERO
                    315:    10 CONTINUE
                    316: *
                    317: *     Update d1 = d1 - T12*y2
                    318: *
                    319:       CALL ZGEMV( 'No transpose', M, N-M, -CONE, B( 1, M+P-N+1 ), LDB,
                    320:      $            Y( M+P-N+1 ), 1, CONE, D, 1 )
                    321: *
                    322: *     Solve triangular system: R11*x = d1
                    323: *
                    324:       IF( M.GT.0 ) THEN
                    325:          CALL ZTRTRS( 'Upper', 'No Transpose', 'Non unit', M, 1, A, LDA,
                    326:      $                D, M, INFO )
                    327: *
                    328:          IF( INFO.GT.0 ) THEN
                    329:             INFO = 2
                    330:             RETURN
                    331:          END IF
                    332: *
                    333: *        Copy D to X
                    334: *
                    335:          CALL ZCOPY( M, D, 1, X, 1 )
                    336:       END IF
                    337: *
1.8       bertrand  338: *     Backward transformation y = Z**H *y
1.1       bertrand  339: *
                    340:       CALL ZUNMRQ( 'Left', 'Conjugate transpose', P, 1, NP,
                    341:      $             B( MAX( 1, N-P+1 ), 1 ), LDB, WORK( M+1 ), Y,
                    342:      $             MAX( 1, P ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
                    343:       WORK( 1 ) = M + NP + MAX( LOPT, INT( WORK( M+NP+1 ) ) )
                    344: *
                    345:       RETURN
                    346: *
                    347: *     End of ZGGGLM
                    348: *
                    349:       END

CVSweb interface <joel.bertrand@systella.fr>