--- rpl/lapack/lapack/zggglm.f 2010/12/21 13:53:45 1.7 +++ rpl/lapack/lapack/zggglm.f 2023/08/07 08:39:21 1.19 @@ -1,10 +1,191 @@ +*> \brief \b ZGGGLM +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download ZGGGLM + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE ZGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK, +* INFO ) +* +* .. Scalar Arguments .. +* INTEGER INFO, LDA, LDB, LWORK, M, N, P +* .. +* .. Array Arguments .. +* COMPLEX*16 A( LDA, * ), B( LDB, * ), D( * ), WORK( * ), +* $ X( * ), Y( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> ZGGGLM solves a general Gauss-Markov linear model (GLM) problem: +*> +*> minimize || y ||_2 subject to d = A*x + B*y +*> x +*> +*> where A is an N-by-M matrix, B is an N-by-P matrix, and d is a +*> given N-vector. It is assumed that M <= N <= M+P, and +*> +*> rank(A) = M and rank( A B ) = N. +*> +*> Under these assumptions, the constrained equation is always +*> consistent, and there is a unique solution x and a minimal 2-norm +*> solution y, which is obtained using a generalized QR factorization +*> of the matrices (A, B) given by +*> +*> A = Q*(R), B = Q*T*Z. +*> (0) +*> +*> In particular, if matrix B is square nonsingular, then the problem +*> GLM is equivalent to the following weighted linear least squares +*> problem +*> +*> minimize || inv(B)*(d-A*x) ||_2 +*> x +*> +*> where inv(B) denotes the inverse of B. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of rows of the matrices A and B. N >= 0. +*> \endverbatim +*> +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of columns of the matrix A. 0 <= M <= N. +*> \endverbatim +*> +*> \param[in] P +*> \verbatim +*> P is INTEGER +*> The number of columns of the matrix B. P >= N-M. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is COMPLEX*16 array, dimension (LDA,M) +*> On entry, the N-by-M matrix A. +*> On exit, the upper triangular part of the array A contains +*> the M-by-M upper triangular matrix R. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,N). +*> \endverbatim +*> +*> \param[in,out] B +*> \verbatim +*> B is COMPLEX*16 array, dimension (LDB,P) +*> On entry, the N-by-P matrix B. +*> On exit, if N <= P, the upper triangle of the subarray +*> B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; +*> if N > P, the elements on and above the (N-P)th subdiagonal +*> contain the N-by-P upper trapezoidal matrix T. +*> \endverbatim +*> +*> \param[in] LDB +*> \verbatim +*> LDB is INTEGER +*> The leading dimension of the array B. LDB >= max(1,N). +*> \endverbatim +*> +*> \param[in,out] D +*> \verbatim +*> D is COMPLEX*16 array, dimension (N) +*> On entry, D is the left hand side of the GLM equation. +*> On exit, D is destroyed. +*> \endverbatim +*> +*> \param[out] X +*> \verbatim +*> X is COMPLEX*16 array, dimension (M) +*> \endverbatim +*> +*> \param[out] Y +*> \verbatim +*> Y is COMPLEX*16 array, dimension (P) +*> +*> On exit, X and Y are the solutions of the GLM problem. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of the array WORK. LWORK >= max(1,N+M+P). +*> For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB, +*> where NB is an upper bound for the optimal blocksizes for +*> ZGEQRF, ZGERQF, ZUNMQR and ZUNMRQ. +*> +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the optimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit. +*> < 0: if INFO = -i, the i-th argument had an illegal value. +*> = 1: the upper triangular factor R associated with A in the +*> generalized QR factorization of the pair (A, B) is +*> singular, so that rank(A) < M; the least squares +*> solution could not be computed. +*> = 2: the bottom (N-M) by (N-M) part of the upper trapezoidal +*> factor T associated with B in the generalized QR +*> factorization of the pair (A, B) is singular, so that +*> rank( A B ) < N; the least squares solution could not +*> be computed. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \ingroup complex16OTHEReigen +* +* ===================================================================== SUBROUTINE ZGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK, $ INFO ) * -* -- LAPACK driver routine (version 3.2) -- +* -- LAPACK driver routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* November 2006 * * .. Scalar Arguments .. INTEGER INFO, LDA, LDB, LWORK, M, N, P @@ -14,101 +195,6 @@ $ X( * ), Y( * ) * .. * -* Purpose -* ======= -* -* ZGGGLM solves a general Gauss-Markov linear model (GLM) problem: -* -* minimize || y ||_2 subject to d = A*x + B*y -* x -* -* where A is an N-by-M matrix, B is an N-by-P matrix, and d is a -* given N-vector. It is assumed that M <= N <= M+P, and -* -* rank(A) = M and rank( A B ) = N. -* -* Under these assumptions, the constrained equation is always -* consistent, and there is a unique solution x and a minimal 2-norm -* solution y, which is obtained using a generalized QR factorization -* of the matrices (A, B) given by -* -* A = Q*(R), B = Q*T*Z. -* (0) -* -* In particular, if matrix B is square nonsingular, then the problem -* GLM is equivalent to the following weighted linear least squares -* problem -* -* minimize || inv(B)*(d-A*x) ||_2 -* x -* -* where inv(B) denotes the inverse of B. -* -* Arguments -* ========= -* -* N (input) INTEGER -* The number of rows of the matrices A and B. N >= 0. -* -* M (input) INTEGER -* The number of columns of the matrix A. 0 <= M <= N. -* -* P (input) INTEGER -* The number of columns of the matrix B. P >= N-M. -* -* A (input/output) COMPLEX*16 array, dimension (LDA,M) -* On entry, the N-by-M matrix A. -* On exit, the upper triangular part of the array A contains -* the M-by-M upper triangular matrix R. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,N). -* -* B (input/output) COMPLEX*16 array, dimension (LDB,P) -* On entry, the N-by-P matrix B. -* On exit, if N <= P, the upper triangle of the subarray -* B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; -* if N > P, the elements on and above the (N-P)th subdiagonal -* contain the N-by-P upper trapezoidal matrix T. -* -* LDB (input) INTEGER -* The leading dimension of the array B. LDB >= max(1,N). -* -* D (input/output) COMPLEX*16 array, dimension (N) -* On entry, D is the left hand side of the GLM equation. -* On exit, D is destroyed. -* -* X (output) COMPLEX*16 array, dimension (M) -* Y (output) COMPLEX*16 array, dimension (P) -* On exit, X and Y are the solutions of the GLM problem. -* -* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) -* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. LWORK >= max(1,N+M+P). -* For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB, -* where NB is an upper bound for the optimal blocksizes for -* ZGEQRF, ZGERQF, ZUNMQR and ZUNMRQ. -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit. -* < 0: if INFO = -i, the i-th argument had an illegal value. -* = 1: the upper triangular factor R associated with A in the -* generalized QR factorization of the pair (A, B) is -* singular, so that rank(A) < M; the least squares -* solution could not be computed. -* = 2: the bottom (N-M) by (N-M) part of the upper trapezoidal -* factor T associated with B in the generalized QR -* factorization of the pair (A, B) is singular, so that -* rank( A B ) < N; the least squares solution could not -* be computed. -* * =================================================================== * * .. Parameters .. @@ -127,7 +213,7 @@ * .. * .. External Functions .. INTEGER ILAENV - EXTERNAL ILAENV + EXTERNAL ILAENV * .. * .. Intrinsic Functions .. INTRINSIC INT, MAX, MIN @@ -182,24 +268,31 @@ * * Quick return if possible * - IF( N.EQ.0 ) - $ RETURN + IF( N.EQ.0 ) THEN + DO I = 1, M + X(I) = CZERO + END DO + DO I = 1, P + Y(I) = CZERO + END DO + RETURN + END IF * * Compute the GQR factorization of matrices A and B: * -* Q'*A = ( R11 ) M, Q'*B*Z' = ( T11 T12 ) M -* ( 0 ) N-M ( 0 T22 ) N-M -* M M+P-N N-M +* Q**H*A = ( R11 ) M, Q**H*B*Z**H = ( T11 T12 ) M +* ( 0 ) N-M ( 0 T22 ) N-M +* M M+P-N N-M * * where R11 and T22 are upper triangular, and Q and Z are * unitary. * CALL ZGGQRF( N, M, P, A, LDA, WORK, B, LDB, WORK( M+1 ), $ WORK( M+NP+1 ), LWORK-M-NP, INFO ) - LOPT = WORK( M+NP+1 ) + LOPT = INT( WORK( M+NP+1 ) ) * -* Update left-hand-side vector d = Q'*d = ( d1 ) M -* ( d2 ) N-M +* Update left-hand-side vector d = Q**H*d = ( d1 ) M +* ( d2 ) N-M * CALL ZUNMQR( 'Left', 'Conjugate transpose', N, 1, M, A, LDA, WORK, $ D, MAX( 1, N ), WORK( M+NP+1 ), LWORK-M-NP, INFO ) @@ -246,7 +339,7 @@ CALL ZCOPY( M, D, 1, X, 1 ) END IF * -* Backward transformation y = Z'*y +* Backward transformation y = Z**H *y * CALL ZUNMRQ( 'Left', 'Conjugate transpose', P, 1, NP, $ B( MAX( 1, N-P+1 ), 1 ), LDB, WORK( M+1 ), Y,