File:  [local] / rpl / lapack / lapack / zggevx.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:21 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGGEVX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggevx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggevx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggevx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
   22: *                          ALPHA, BETA, VL, LDVL, VR, LDVR, ILO, IHI,
   23: *                          LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, RCONDV,
   24: *                          WORK, LWORK, RWORK, IWORK, BWORK, INFO )
   25: *
   26: *       .. Scalar Arguments ..
   27: *       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
   28: *       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
   29: *       DOUBLE PRECISION   ABNRM, BBNRM
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       LOGICAL            BWORK( * )
   33: *       INTEGER            IWORK( * )
   34: *       DOUBLE PRECISION   LSCALE( * ), RCONDE( * ), RCONDV( * ),
   35: *      $                   RSCALE( * ), RWORK( * )
   36: *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
   37: *      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
   38: *      $                   WORK( * )
   39: *       ..
   40: *
   41: *
   42: *> \par Purpose:
   43: *  =============
   44: *>
   45: *> \verbatim
   46: *>
   47: *> ZGGEVX computes for a pair of N-by-N complex nonsymmetric matrices
   48: *> (A,B) the generalized eigenvalues, and optionally, the left and/or
   49: *> right generalized eigenvectors.
   50: *>
   51: *> Optionally, it also computes a balancing transformation to improve
   52: *> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
   53: *> LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
   54: *> the eigenvalues (RCONDE), and reciprocal condition numbers for the
   55: *> right eigenvectors (RCONDV).
   56: *>
   57: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
   58: *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
   59: *> singular. It is usually represented as the pair (alpha,beta), as
   60: *> there is a reasonable interpretation for beta=0, and even for both
   61: *> being zero.
   62: *>
   63: *> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
   64: *> of (A,B) satisfies
   65: *>                  A * v(j) = lambda(j) * B * v(j) .
   66: *> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
   67: *> of (A,B) satisfies
   68: *>                  u(j)**H * A  = lambda(j) * u(j)**H * B.
   69: *> where u(j)**H is the conjugate-transpose of u(j).
   70: *>
   71: *> \endverbatim
   72: *
   73: *  Arguments:
   74: *  ==========
   75: *
   76: *> \param[in] BALANC
   77: *> \verbatim
   78: *>          BALANC is CHARACTER*1
   79: *>          Specifies the balance option to be performed:
   80: *>          = 'N':  do not diagonally scale or permute;
   81: *>          = 'P':  permute only;
   82: *>          = 'S':  scale only;
   83: *>          = 'B':  both permute and scale.
   84: *>          Computed reciprocal condition numbers will be for the
   85: *>          matrices after permuting and/or balancing. Permuting does
   86: *>          not change condition numbers (in exact arithmetic), but
   87: *>          balancing does.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] JOBVL
   91: *> \verbatim
   92: *>          JOBVL is CHARACTER*1
   93: *>          = 'N':  do not compute the left generalized eigenvectors;
   94: *>          = 'V':  compute the left generalized eigenvectors.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] JOBVR
   98: *> \verbatim
   99: *>          JOBVR is CHARACTER*1
  100: *>          = 'N':  do not compute the right generalized eigenvectors;
  101: *>          = 'V':  compute the right generalized eigenvectors.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] SENSE
  105: *> \verbatim
  106: *>          SENSE is CHARACTER*1
  107: *>          Determines which reciprocal condition numbers are computed.
  108: *>          = 'N': none are computed;
  109: *>          = 'E': computed for eigenvalues only;
  110: *>          = 'V': computed for eigenvectors only;
  111: *>          = 'B': computed for eigenvalues and eigenvectors.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] N
  115: *> \verbatim
  116: *>          N is INTEGER
  117: *>          The order of the matrices A, B, VL, and VR.  N >= 0.
  118: *> \endverbatim
  119: *>
  120: *> \param[in,out] A
  121: *> \verbatim
  122: *>          A is COMPLEX*16 array, dimension (LDA, N)
  123: *>          On entry, the matrix A in the pair (A,B).
  124: *>          On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
  125: *>          or both, then A contains the first part of the complex Schur
  126: *>          form of the "balanced" versions of the input A and B.
  127: *> \endverbatim
  128: *>
  129: *> \param[in] LDA
  130: *> \verbatim
  131: *>          LDA is INTEGER
  132: *>          The leading dimension of A.  LDA >= max(1,N).
  133: *> \endverbatim
  134: *>
  135: *> \param[in,out] B
  136: *> \verbatim
  137: *>          B is COMPLEX*16 array, dimension (LDB, N)
  138: *>          On entry, the matrix B in the pair (A,B).
  139: *>          On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
  140: *>          or both, then B contains the second part of the complex
  141: *>          Schur form of the "balanced" versions of the input A and B.
  142: *> \endverbatim
  143: *>
  144: *> \param[in] LDB
  145: *> \verbatim
  146: *>          LDB is INTEGER
  147: *>          The leading dimension of B.  LDB >= max(1,N).
  148: *> \endverbatim
  149: *>
  150: *> \param[out] ALPHA
  151: *> \verbatim
  152: *>          ALPHA is COMPLEX*16 array, dimension (N)
  153: *> \endverbatim
  154: *>
  155: *> \param[out] BETA
  156: *> \verbatim
  157: *>          BETA is COMPLEX*16 array, dimension (N)
  158: *>          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized
  159: *>          eigenvalues.
  160: *>
  161: *>          Note: the quotient ALPHA(j)/BETA(j) ) may easily over- or
  162: *>          underflow, and BETA(j) may even be zero.  Thus, the user
  163: *>          should avoid naively computing the ratio ALPHA/BETA.
  164: *>          However, ALPHA will be always less than and usually
  165: *>          comparable with norm(A) in magnitude, and BETA always less
  166: *>          than and usually comparable with norm(B).
  167: *> \endverbatim
  168: *>
  169: *> \param[out] VL
  170: *> \verbatim
  171: *>          VL is COMPLEX*16 array, dimension (LDVL,N)
  172: *>          If JOBVL = 'V', the left generalized eigenvectors u(j) are
  173: *>          stored one after another in the columns of VL, in the same
  174: *>          order as their eigenvalues.
  175: *>          Each eigenvector will be scaled so the largest component
  176: *>          will have abs(real part) + abs(imag. part) = 1.
  177: *>          Not referenced if JOBVL = 'N'.
  178: *> \endverbatim
  179: *>
  180: *> \param[in] LDVL
  181: *> \verbatim
  182: *>          LDVL is INTEGER
  183: *>          The leading dimension of the matrix VL. LDVL >= 1, and
  184: *>          if JOBVL = 'V', LDVL >= N.
  185: *> \endverbatim
  186: *>
  187: *> \param[out] VR
  188: *> \verbatim
  189: *>          VR is COMPLEX*16 array, dimension (LDVR,N)
  190: *>          If JOBVR = 'V', the right generalized eigenvectors v(j) are
  191: *>          stored one after another in the columns of VR, in the same
  192: *>          order as their eigenvalues.
  193: *>          Each eigenvector will be scaled so the largest component
  194: *>          will have abs(real part) + abs(imag. part) = 1.
  195: *>          Not referenced if JOBVR = 'N'.
  196: *> \endverbatim
  197: *>
  198: *> \param[in] LDVR
  199: *> \verbatim
  200: *>          LDVR is INTEGER
  201: *>          The leading dimension of the matrix VR. LDVR >= 1, and
  202: *>          if JOBVR = 'V', LDVR >= N.
  203: *> \endverbatim
  204: *>
  205: *> \param[out] ILO
  206: *> \verbatim
  207: *>          ILO is INTEGER
  208: *> \endverbatim
  209: *>
  210: *> \param[out] IHI
  211: *> \verbatim
  212: *>          IHI is INTEGER
  213: *>          ILO and IHI are integer values such that on exit
  214: *>          A(i,j) = 0 and B(i,j) = 0 if i > j and
  215: *>          j = 1,...,ILO-1 or i = IHI+1,...,N.
  216: *>          If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
  217: *> \endverbatim
  218: *>
  219: *> \param[out] LSCALE
  220: *> \verbatim
  221: *>          LSCALE is DOUBLE PRECISION array, dimension (N)
  222: *>          Details of the permutations and scaling factors applied
  223: *>          to the left side of A and B.  If PL(j) is the index of the
  224: *>          row interchanged with row j, and DL(j) is the scaling
  225: *>          factor applied to row j, then
  226: *>            LSCALE(j) = PL(j)  for j = 1,...,ILO-1
  227: *>                      = DL(j)  for j = ILO,...,IHI
  228: *>                      = PL(j)  for j = IHI+1,...,N.
  229: *>          The order in which the interchanges are made is N to IHI+1,
  230: *>          then 1 to ILO-1.
  231: *> \endverbatim
  232: *>
  233: *> \param[out] RSCALE
  234: *> \verbatim
  235: *>          RSCALE is DOUBLE PRECISION array, dimension (N)
  236: *>          Details of the permutations and scaling factors applied
  237: *>          to the right side of A and B.  If PR(j) is the index of the
  238: *>          column interchanged with column j, and DR(j) is the scaling
  239: *>          factor applied to column j, then
  240: *>            RSCALE(j) = PR(j)  for j = 1,...,ILO-1
  241: *>                      = DR(j)  for j = ILO,...,IHI
  242: *>                      = PR(j)  for j = IHI+1,...,N
  243: *>          The order in which the interchanges are made is N to IHI+1,
  244: *>          then 1 to ILO-1.
  245: *> \endverbatim
  246: *>
  247: *> \param[out] ABNRM
  248: *> \verbatim
  249: *>          ABNRM is DOUBLE PRECISION
  250: *>          The one-norm of the balanced matrix A.
  251: *> \endverbatim
  252: *>
  253: *> \param[out] BBNRM
  254: *> \verbatim
  255: *>          BBNRM is DOUBLE PRECISION
  256: *>          The one-norm of the balanced matrix B.
  257: *> \endverbatim
  258: *>
  259: *> \param[out] RCONDE
  260: *> \verbatim
  261: *>          RCONDE is DOUBLE PRECISION array, dimension (N)
  262: *>          If SENSE = 'E' or 'B', the reciprocal condition numbers of
  263: *>          the eigenvalues, stored in consecutive elements of the array.
  264: *>          If SENSE = 'N' or 'V', RCONDE is not referenced.
  265: *> \endverbatim
  266: *>
  267: *> \param[out] RCONDV
  268: *> \verbatim
  269: *>          RCONDV is DOUBLE PRECISION array, dimension (N)
  270: *>          If JOB = 'V' or 'B', the estimated reciprocal condition
  271: *>          numbers of the eigenvectors, stored in consecutive elements
  272: *>          of the array. If the eigenvalues cannot be reordered to
  273: *>          compute RCONDV(j), RCONDV(j) is set to 0; this can only occur
  274: *>          when the true value would be very small anyway.
  275: *>          If SENSE = 'N' or 'E', RCONDV is not referenced.
  276: *> \endverbatim
  277: *>
  278: *> \param[out] WORK
  279: *> \verbatim
  280: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  281: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  282: *> \endverbatim
  283: *>
  284: *> \param[in] LWORK
  285: *> \verbatim
  286: *>          LWORK is INTEGER
  287: *>          The dimension of the array WORK. LWORK >= max(1,2*N).
  288: *>          If SENSE = 'E', LWORK >= max(1,4*N).
  289: *>          If SENSE = 'V' or 'B', LWORK >= max(1,2*N*N+2*N).
  290: *>
  291: *>          If LWORK = -1, then a workspace query is assumed; the routine
  292: *>          only calculates the optimal size of the WORK array, returns
  293: *>          this value as the first entry of the WORK array, and no error
  294: *>          message related to LWORK is issued by XERBLA.
  295: *> \endverbatim
  296: *>
  297: *> \param[out] RWORK
  298: *> \verbatim
  299: *>          RWORK is DOUBLE PRECISION array, dimension (lrwork)
  300: *>          lrwork must be at least max(1,6*N) if BALANC = 'S' or 'B',
  301: *>          and at least max(1,2*N) otherwise.
  302: *>          Real workspace.
  303: *> \endverbatim
  304: *>
  305: *> \param[out] IWORK
  306: *> \verbatim
  307: *>          IWORK is INTEGER array, dimension (N+2)
  308: *>          If SENSE = 'E', IWORK is not referenced.
  309: *> \endverbatim
  310: *>
  311: *> \param[out] BWORK
  312: *> \verbatim
  313: *>          BWORK is LOGICAL array, dimension (N)
  314: *>          If SENSE = 'N', BWORK is not referenced.
  315: *> \endverbatim
  316: *>
  317: *> \param[out] INFO
  318: *> \verbatim
  319: *>          INFO is INTEGER
  320: *>          = 0:  successful exit
  321: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  322: *>          = 1,...,N:
  323: *>                The QZ iteration failed.  No eigenvectors have been
  324: *>                calculated, but ALPHA(j) and BETA(j) should be correct
  325: *>                for j=INFO+1,...,N.
  326: *>          > N:  =N+1: other than QZ iteration failed in ZHGEQZ.
  327: *>                =N+2: error return from ZTGEVC.
  328: *> \endverbatim
  329: *
  330: *  Authors:
  331: *  ========
  332: *
  333: *> \author Univ. of Tennessee
  334: *> \author Univ. of California Berkeley
  335: *> \author Univ. of Colorado Denver
  336: *> \author NAG Ltd.
  337: *
  338: *> \ingroup complex16GEeigen
  339: *
  340: *> \par Further Details:
  341: *  =====================
  342: *>
  343: *> \verbatim
  344: *>
  345: *>  Balancing a matrix pair (A,B) includes, first, permuting rows and
  346: *>  columns to isolate eigenvalues, second, applying diagonal similarity
  347: *>  transformation to the rows and columns to make the rows and columns
  348: *>  as close in norm as possible. The computed reciprocal condition
  349: *>  numbers correspond to the balanced matrix. Permuting rows and columns
  350: *>  will not change the condition numbers (in exact arithmetic) but
  351: *>  diagonal scaling will.  For further explanation of balancing, see
  352: *>  section 4.11.1.2 of LAPACK Users' Guide.
  353: *>
  354: *>  An approximate error bound on the chordal distance between the i-th
  355: *>  computed generalized eigenvalue w and the corresponding exact
  356: *>  eigenvalue lambda is
  357: *>
  358: *>       chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
  359: *>
  360: *>  An approximate error bound for the angle between the i-th computed
  361: *>  eigenvector VL(i) or VR(i) is given by
  362: *>
  363: *>       EPS * norm(ABNRM, BBNRM) / DIF(i).
  364: *>
  365: *>  For further explanation of the reciprocal condition numbers RCONDE
  366: *>  and RCONDV, see section 4.11 of LAPACK User's Guide.
  367: *> \endverbatim
  368: *>
  369: *  =====================================================================
  370:       SUBROUTINE ZGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
  371:      $                   ALPHA, BETA, VL, LDVL, VR, LDVR, ILO, IHI,
  372:      $                   LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, RCONDV,
  373:      $                   WORK, LWORK, RWORK, IWORK, BWORK, INFO )
  374: *
  375: *  -- LAPACK driver routine --
  376: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  377: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  378: *
  379: *     .. Scalar Arguments ..
  380:       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
  381:       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
  382:       DOUBLE PRECISION   ABNRM, BBNRM
  383: *     ..
  384: *     .. Array Arguments ..
  385:       LOGICAL            BWORK( * )
  386:       INTEGER            IWORK( * )
  387:       DOUBLE PRECISION   LSCALE( * ), RCONDE( * ), RCONDV( * ),
  388:      $                   RSCALE( * ), RWORK( * )
  389:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
  390:      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
  391:      $                   WORK( * )
  392: *     ..
  393: *
  394: *  =====================================================================
  395: *
  396: *     .. Parameters ..
  397:       DOUBLE PRECISION   ZERO, ONE
  398:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  399:       COMPLEX*16         CZERO, CONE
  400:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  401:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  402: *     ..
  403: *     .. Local Scalars ..
  404:       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY, NOSCL,
  405:      $                   WANTSB, WANTSE, WANTSN, WANTSV
  406:       CHARACTER          CHTEMP
  407:       INTEGER            I, ICOLS, IERR, IJOBVL, IJOBVR, IN, IROWS,
  408:      $                   ITAU, IWRK, IWRK1, J, JC, JR, M, MAXWRK, MINWRK
  409:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
  410:      $                   SMLNUM, TEMP
  411:       COMPLEX*16         X
  412: *     ..
  413: *     .. Local Arrays ..
  414:       LOGICAL            LDUMMA( 1 )
  415: *     ..
  416: *     .. External Subroutines ..
  417:       EXTERNAL           DLABAD, DLASCL, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL,
  418:      $                   ZGGHRD, ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGEVC,
  419:      $                   ZTGSNA, ZUNGQR, ZUNMQR
  420: *     ..
  421: *     .. External Functions ..
  422:       LOGICAL            LSAME
  423:       INTEGER            ILAENV
  424:       DOUBLE PRECISION   DLAMCH, ZLANGE
  425:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
  426: *     ..
  427: *     .. Intrinsic Functions ..
  428:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
  429: *     ..
  430: *     .. Statement Functions ..
  431:       DOUBLE PRECISION   ABS1
  432: *     ..
  433: *     .. Statement Function definitions ..
  434:       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
  435: *     ..
  436: *     .. Executable Statements ..
  437: *
  438: *     Decode the input arguments
  439: *
  440:       IF( LSAME( JOBVL, 'N' ) ) THEN
  441:          IJOBVL = 1
  442:          ILVL = .FALSE.
  443:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
  444:          IJOBVL = 2
  445:          ILVL = .TRUE.
  446:       ELSE
  447:          IJOBVL = -1
  448:          ILVL = .FALSE.
  449:       END IF
  450: *
  451:       IF( LSAME( JOBVR, 'N' ) ) THEN
  452:          IJOBVR = 1
  453:          ILVR = .FALSE.
  454:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
  455:          IJOBVR = 2
  456:          ILVR = .TRUE.
  457:       ELSE
  458:          IJOBVR = -1
  459:          ILVR = .FALSE.
  460:       END IF
  461:       ILV = ILVL .OR. ILVR
  462: *
  463:       NOSCL  = LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'P' )
  464:       WANTSN = LSAME( SENSE, 'N' )
  465:       WANTSE = LSAME( SENSE, 'E' )
  466:       WANTSV = LSAME( SENSE, 'V' )
  467:       WANTSB = LSAME( SENSE, 'B' )
  468: *
  469: *     Test the input arguments
  470: *
  471:       INFO = 0
  472:       LQUERY = ( LWORK.EQ.-1 )
  473:       IF( .NOT.( NOSCL .OR. LSAME( BALANC,'S' ) .OR.
  474:      $    LSAME( BALANC, 'B' ) ) ) THEN
  475:          INFO = -1
  476:       ELSE IF( IJOBVL.LE.0 ) THEN
  477:          INFO = -2
  478:       ELSE IF( IJOBVR.LE.0 ) THEN
  479:          INFO = -3
  480:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSB .OR. WANTSV ) )
  481:      $          THEN
  482:          INFO = -4
  483:       ELSE IF( N.LT.0 ) THEN
  484:          INFO = -5
  485:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  486:          INFO = -7
  487:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  488:          INFO = -9
  489:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
  490:          INFO = -13
  491:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
  492:          INFO = -15
  493:       END IF
  494: *
  495: *     Compute workspace
  496: *      (Note: Comments in the code beginning "Workspace:" describe the
  497: *       minimal amount of workspace needed at that point in the code,
  498: *       as well as the preferred amount for good performance.
  499: *       NB refers to the optimal block size for the immediately
  500: *       following subroutine, as returned by ILAENV. The workspace is
  501: *       computed assuming ILO = 1 and IHI = N, the worst case.)
  502: *
  503:       IF( INFO.EQ.0 ) THEN
  504:          IF( N.EQ.0 ) THEN
  505:             MINWRK = 1
  506:             MAXWRK = 1
  507:          ELSE
  508:             MINWRK = 2*N
  509:             IF( WANTSE ) THEN
  510:                MINWRK = 4*N
  511:             ELSE IF( WANTSV .OR. WANTSB ) THEN
  512:                MINWRK = 2*N*( N + 1)
  513:             END IF
  514:             MAXWRK = MINWRK
  515:             MAXWRK = MAX( MAXWRK,
  516:      $                    N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
  517:             MAXWRK = MAX( MAXWRK,
  518:      $                    N + N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, 0 ) )
  519:             IF( ILVL ) THEN
  520:                MAXWRK = MAX( MAXWRK, N +
  521:      $                       N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, 0 ) )
  522:             END IF
  523:          END IF
  524:          WORK( 1 ) = MAXWRK
  525: *
  526:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  527:             INFO = -25
  528:          END IF
  529:       END IF
  530: *
  531:       IF( INFO.NE.0 ) THEN
  532:          CALL XERBLA( 'ZGGEVX', -INFO )
  533:          RETURN
  534:       ELSE IF( LQUERY ) THEN
  535:          RETURN
  536:       END IF
  537: *
  538: *     Quick return if possible
  539: *
  540:       IF( N.EQ.0 )
  541:      $   RETURN
  542: *
  543: *     Get machine constants
  544: *
  545:       EPS = DLAMCH( 'P' )
  546:       SMLNUM = DLAMCH( 'S' )
  547:       BIGNUM = ONE / SMLNUM
  548:       CALL DLABAD( SMLNUM, BIGNUM )
  549:       SMLNUM = SQRT( SMLNUM ) / EPS
  550:       BIGNUM = ONE / SMLNUM
  551: *
  552: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  553: *
  554:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
  555:       ILASCL = .FALSE.
  556:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  557:          ANRMTO = SMLNUM
  558:          ILASCL = .TRUE.
  559:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  560:          ANRMTO = BIGNUM
  561:          ILASCL = .TRUE.
  562:       END IF
  563:       IF( ILASCL )
  564:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  565: *
  566: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  567: *
  568:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
  569:       ILBSCL = .FALSE.
  570:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  571:          BNRMTO = SMLNUM
  572:          ILBSCL = .TRUE.
  573:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  574:          BNRMTO = BIGNUM
  575:          ILBSCL = .TRUE.
  576:       END IF
  577:       IF( ILBSCL )
  578:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  579: *
  580: *     Permute and/or balance the matrix pair (A,B)
  581: *     (Real Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise)
  582: *
  583:       CALL ZGGBAL( BALANC, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
  584:      $             RWORK, IERR )
  585: *
  586: *     Compute ABNRM and BBNRM
  587: *
  588:       ABNRM = ZLANGE( '1', N, N, A, LDA, RWORK( 1 ) )
  589:       IF( ILASCL ) THEN
  590:          RWORK( 1 ) = ABNRM
  591:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, 1, 1, RWORK( 1 ), 1,
  592:      $                IERR )
  593:          ABNRM = RWORK( 1 )
  594:       END IF
  595: *
  596:       BBNRM = ZLANGE( '1', N, N, B, LDB, RWORK( 1 ) )
  597:       IF( ILBSCL ) THEN
  598:          RWORK( 1 ) = BBNRM
  599:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, 1, 1, RWORK( 1 ), 1,
  600:      $                IERR )
  601:          BBNRM = RWORK( 1 )
  602:       END IF
  603: *
  604: *     Reduce B to triangular form (QR decomposition of B)
  605: *     (Complex Workspace: need N, prefer N*NB )
  606: *
  607:       IROWS = IHI + 1 - ILO
  608:       IF( ILV .OR. .NOT.WANTSN ) THEN
  609:          ICOLS = N + 1 - ILO
  610:       ELSE
  611:          ICOLS = IROWS
  612:       END IF
  613:       ITAU = 1
  614:       IWRK = ITAU + IROWS
  615:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  616:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
  617: *
  618: *     Apply the unitary transformation to A
  619: *     (Complex Workspace: need N, prefer N*NB)
  620: *
  621:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  622:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  623:      $             LWORK+1-IWRK, IERR )
  624: *
  625: *     Initialize VL and/or VR
  626: *     (Workspace: need N, prefer N*NB)
  627: *
  628:       IF( ILVL ) THEN
  629:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
  630:          IF( IROWS.GT.1 ) THEN
  631:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  632:      $                   VL( ILO+1, ILO ), LDVL )
  633:          END IF
  634:          CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
  635:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  636:       END IF
  637: *
  638:       IF( ILVR )
  639:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
  640: *
  641: *     Reduce to generalized Hessenberg form
  642: *     (Workspace: none needed)
  643: *
  644:       IF( ILV .OR. .NOT.WANTSN ) THEN
  645: *
  646: *        Eigenvectors requested -- work on whole matrix.
  647: *
  648:          CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
  649:      $                LDVL, VR, LDVR, IERR )
  650:       ELSE
  651:          CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
  652:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
  653:       END IF
  654: *
  655: *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
  656: *     Schur forms and Schur vectors)
  657: *     (Complex Workspace: need N)
  658: *     (Real Workspace: need N)
  659: *
  660:       IWRK = ITAU
  661:       IF( ILV .OR. .NOT.WANTSN ) THEN
  662:          CHTEMP = 'S'
  663:       ELSE
  664:          CHTEMP = 'E'
  665:       END IF
  666: *
  667:       CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
  668:      $             ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
  669:      $             LWORK+1-IWRK, RWORK, IERR )
  670:       IF( IERR.NE.0 ) THEN
  671:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  672:             INFO = IERR
  673:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  674:             INFO = IERR - N
  675:          ELSE
  676:             INFO = N + 1
  677:          END IF
  678:          GO TO 90
  679:       END IF
  680: *
  681: *     Compute Eigenvectors and estimate condition numbers if desired
  682: *     ZTGEVC: (Complex Workspace: need 2*N )
  683: *             (Real Workspace:    need 2*N )
  684: *     ZTGSNA: (Complex Workspace: need 2*N*N if SENSE='V' or 'B')
  685: *             (Integer Workspace: need N+2 )
  686: *
  687:       IF( ILV .OR. .NOT.WANTSN ) THEN
  688:          IF( ILV ) THEN
  689:             IF( ILVL ) THEN
  690:                IF( ILVR ) THEN
  691:                   CHTEMP = 'B'
  692:                ELSE
  693:                   CHTEMP = 'L'
  694:                END IF
  695:             ELSE
  696:                CHTEMP = 'R'
  697:             END IF
  698: *
  699:             CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL,
  700:      $                   LDVL, VR, LDVR, N, IN, WORK( IWRK ), RWORK,
  701:      $                   IERR )
  702:             IF( IERR.NE.0 ) THEN
  703:                INFO = N + 2
  704:                GO TO 90
  705:             END IF
  706:          END IF
  707: *
  708:          IF( .NOT.WANTSN ) THEN
  709: *
  710: *           compute eigenvectors (ZTGEVC) and estimate condition
  711: *           numbers (ZTGSNA). Note that the definition of the condition
  712: *           number is not invariant under transformation (u,v) to
  713: *           (Q*u, Z*v), where (u,v) are eigenvectors of the generalized
  714: *           Schur form (S,T), Q and Z are orthogonal matrices. In order
  715: *           to avoid using extra 2*N*N workspace, we have to
  716: *           re-calculate eigenvectors and estimate the condition numbers
  717: *           one at a time.
  718: *
  719:             DO 20 I = 1, N
  720: *
  721:                DO 10 J = 1, N
  722:                   BWORK( J ) = .FALSE.
  723:    10          CONTINUE
  724:                BWORK( I ) = .TRUE.
  725: *
  726:                IWRK = N + 1
  727:                IWRK1 = IWRK + N
  728: *
  729:                IF( WANTSE .OR. WANTSB ) THEN
  730:                   CALL ZTGEVC( 'B', 'S', BWORK, N, A, LDA, B, LDB,
  731:      $                         WORK( 1 ), N, WORK( IWRK ), N, 1, M,
  732:      $                         WORK( IWRK1 ), RWORK, IERR )
  733:                   IF( IERR.NE.0 ) THEN
  734:                      INFO = N + 2
  735:                      GO TO 90
  736:                   END IF
  737:                END IF
  738: *
  739:                CALL ZTGSNA( SENSE, 'S', BWORK, N, A, LDA, B, LDB,
  740:      $                      WORK( 1 ), N, WORK( IWRK ), N, RCONDE( I ),
  741:      $                      RCONDV( I ), 1, M, WORK( IWRK1 ),
  742:      $                      LWORK-IWRK1+1, IWORK, IERR )
  743: *
  744:    20       CONTINUE
  745:          END IF
  746:       END IF
  747: *
  748: *     Undo balancing on VL and VR and normalization
  749: *     (Workspace: none needed)
  750: *
  751:       IF( ILVL ) THEN
  752:          CALL ZGGBAK( BALANC, 'L', N, ILO, IHI, LSCALE, RSCALE, N, VL,
  753:      $                LDVL, IERR )
  754: *
  755:          DO 50 JC = 1, N
  756:             TEMP = ZERO
  757:             DO 30 JR = 1, N
  758:                TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
  759:    30       CONTINUE
  760:             IF( TEMP.LT.SMLNUM )
  761:      $         GO TO 50
  762:             TEMP = ONE / TEMP
  763:             DO 40 JR = 1, N
  764:                VL( JR, JC ) = VL( JR, JC )*TEMP
  765:    40       CONTINUE
  766:    50    CONTINUE
  767:       END IF
  768: *
  769:       IF( ILVR ) THEN
  770:          CALL ZGGBAK( BALANC, 'R', N, ILO, IHI, LSCALE, RSCALE, N, VR,
  771:      $                LDVR, IERR )
  772:          DO 80 JC = 1, N
  773:             TEMP = ZERO
  774:             DO 60 JR = 1, N
  775:                TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
  776:    60       CONTINUE
  777:             IF( TEMP.LT.SMLNUM )
  778:      $         GO TO 80
  779:             TEMP = ONE / TEMP
  780:             DO 70 JR = 1, N
  781:                VR( JR, JC ) = VR( JR, JC )*TEMP
  782:    70       CONTINUE
  783:    80    CONTINUE
  784:       END IF
  785: *
  786: *     Undo scaling if necessary
  787: *
  788:    90 CONTINUE
  789: *
  790:       IF( ILASCL )
  791:      $   CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
  792: *
  793:       IF( ILBSCL )
  794:      $   CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  795: *
  796:       WORK( 1 ) = MAXWRK
  797:       RETURN
  798: *
  799: *     End of ZGGEVX
  800: *
  801:       END

CVSweb interface <joel.bertrand@systella.fr>