File:  [local] / rpl / lapack / lapack / zggevx.f
Revision 1.15: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:54:12 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief <b> ZGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGGEVX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggevx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggevx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggevx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
   22: *                          ALPHA, BETA, VL, LDVL, VR, LDVR, ILO, IHI,
   23: *                          LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, RCONDV,
   24: *                          WORK, LWORK, RWORK, IWORK, BWORK, INFO )
   25: *
   26: *       .. Scalar Arguments ..
   27: *       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
   28: *       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
   29: *       DOUBLE PRECISION   ABNRM, BBNRM
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       LOGICAL            BWORK( * )
   33: *       INTEGER            IWORK( * )
   34: *       DOUBLE PRECISION   LSCALE( * ), RCONDE( * ), RCONDV( * ),
   35: *      $                   RSCALE( * ), RWORK( * )
   36: *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
   37: *      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
   38: *      $                   WORK( * )
   39: *       ..
   40: *
   41: *
   42: *> \par Purpose:
   43: *  =============
   44: *>
   45: *> \verbatim
   46: *>
   47: *> ZGGEVX computes for a pair of N-by-N complex nonsymmetric matrices
   48: *> (A,B) the generalized eigenvalues, and optionally, the left and/or
   49: *> right generalized eigenvectors.
   50: *>
   51: *> Optionally, it also computes a balancing transformation to improve
   52: *> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
   53: *> LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
   54: *> the eigenvalues (RCONDE), and reciprocal condition numbers for the
   55: *> right eigenvectors (RCONDV).
   56: *>
   57: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
   58: *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
   59: *> singular. It is usually represented as the pair (alpha,beta), as
   60: *> there is a reasonable interpretation for beta=0, and even for both
   61: *> being zero.
   62: *>
   63: *> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
   64: *> of (A,B) satisfies
   65: *>                  A * v(j) = lambda(j) * B * v(j) .
   66: *> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
   67: *> of (A,B) satisfies
   68: *>                  u(j)**H * A  = lambda(j) * u(j)**H * B.
   69: *> where u(j)**H is the conjugate-transpose of u(j).
   70: *>
   71: *> \endverbatim
   72: *
   73: *  Arguments:
   74: *  ==========
   75: *
   76: *> \param[in] BALANC
   77: *> \verbatim
   78: *>          BALANC is CHARACTER*1
   79: *>          Specifies the balance option to be performed:
   80: *>          = 'N':  do not diagonally scale or permute;
   81: *>          = 'P':  permute only;
   82: *>          = 'S':  scale only;
   83: *>          = 'B':  both permute and scale.
   84: *>          Computed reciprocal condition numbers will be for the
   85: *>          matrices after permuting and/or balancing. Permuting does
   86: *>          not change condition numbers (in exact arithmetic), but
   87: *>          balancing does.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] JOBVL
   91: *> \verbatim
   92: *>          JOBVL is CHARACTER*1
   93: *>          = 'N':  do not compute the left generalized eigenvectors;
   94: *>          = 'V':  compute the left generalized eigenvectors.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] JOBVR
   98: *> \verbatim
   99: *>          JOBVR is CHARACTER*1
  100: *>          = 'N':  do not compute the right generalized eigenvectors;
  101: *>          = 'V':  compute the right generalized eigenvectors.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] SENSE
  105: *> \verbatim
  106: *>          SENSE is CHARACTER*1
  107: *>          Determines which reciprocal condition numbers are computed.
  108: *>          = 'N': none are computed;
  109: *>          = 'E': computed for eigenvalues only;
  110: *>          = 'V': computed for eigenvectors only;
  111: *>          = 'B': computed for eigenvalues and eigenvectors.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] N
  115: *> \verbatim
  116: *>          N is INTEGER
  117: *>          The order of the matrices A, B, VL, and VR.  N >= 0.
  118: *> \endverbatim
  119: *>
  120: *> \param[in,out] A
  121: *> \verbatim
  122: *>          A is COMPLEX*16 array, dimension (LDA, N)
  123: *>          On entry, the matrix A in the pair (A,B).
  124: *>          On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
  125: *>          or both, then A contains the first part of the complex Schur
  126: *>          form of the "balanced" versions of the input A and B.
  127: *> \endverbatim
  128: *>
  129: *> \param[in] LDA
  130: *> \verbatim
  131: *>          LDA is INTEGER
  132: *>          The leading dimension of A.  LDA >= max(1,N).
  133: *> \endverbatim
  134: *>
  135: *> \param[in,out] B
  136: *> \verbatim
  137: *>          B is COMPLEX*16 array, dimension (LDB, N)
  138: *>          On entry, the matrix B in the pair (A,B).
  139: *>          On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
  140: *>          or both, then B contains the second part of the complex
  141: *>          Schur form of the "balanced" versions of the input A and B.
  142: *> \endverbatim
  143: *>
  144: *> \param[in] LDB
  145: *> \verbatim
  146: *>          LDB is INTEGER
  147: *>          The leading dimension of B.  LDB >= max(1,N).
  148: *> \endverbatim
  149: *>
  150: *> \param[out] ALPHA
  151: *> \verbatim
  152: *>          ALPHA is COMPLEX*16 array, dimension (N)
  153: *> \endverbatim
  154: *>
  155: *> \param[out] BETA
  156: *> \verbatim
  157: *>          BETA is COMPLEX*16 array, dimension (N)
  158: *>          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized
  159: *>          eigenvalues.
  160: *>
  161: *>          Note: the quotient ALPHA(j)/BETA(j) ) may easily over- or
  162: *>          underflow, and BETA(j) may even be zero.  Thus, the user
  163: *>          should avoid naively computing the ratio ALPHA/BETA.
  164: *>          However, ALPHA will be always less than and usually
  165: *>          comparable with norm(A) in magnitude, and BETA always less
  166: *>          than and usually comparable with norm(B).
  167: *> \endverbatim
  168: *>
  169: *> \param[out] VL
  170: *> \verbatim
  171: *>          VL is COMPLEX*16 array, dimension (LDVL,N)
  172: *>          If JOBVL = 'V', the left generalized eigenvectors u(j) are
  173: *>          stored one after another in the columns of VL, in the same
  174: *>          order as their eigenvalues.
  175: *>          Each eigenvector will be scaled so the largest component
  176: *>          will have abs(real part) + abs(imag. part) = 1.
  177: *>          Not referenced if JOBVL = 'N'.
  178: *> \endverbatim
  179: *>
  180: *> \param[in] LDVL
  181: *> \verbatim
  182: *>          LDVL is INTEGER
  183: *>          The leading dimension of the matrix VL. LDVL >= 1, and
  184: *>          if JOBVL = 'V', LDVL >= N.
  185: *> \endverbatim
  186: *>
  187: *> \param[out] VR
  188: *> \verbatim
  189: *>          VR is COMPLEX*16 array, dimension (LDVR,N)
  190: *>          If JOBVR = 'V', the right generalized eigenvectors v(j) are
  191: *>          stored one after another in the columns of VR, in the same
  192: *>          order as their eigenvalues.
  193: *>          Each eigenvector will be scaled so the largest component
  194: *>          will have abs(real part) + abs(imag. part) = 1.
  195: *>          Not referenced if JOBVR = 'N'.
  196: *> \endverbatim
  197: *>
  198: *> \param[in] LDVR
  199: *> \verbatim
  200: *>          LDVR is INTEGER
  201: *>          The leading dimension of the matrix VR. LDVR >= 1, and
  202: *>          if JOBVR = 'V', LDVR >= N.
  203: *> \endverbatim
  204: *>
  205: *> \param[out] ILO
  206: *> \verbatim
  207: *>          ILO is INTEGER
  208: *> \endverbatim
  209: *>
  210: *> \param[out] IHI
  211: *> \verbatim
  212: *>          IHI is INTEGER
  213: *>          ILO and IHI are integer values such that on exit
  214: *>          A(i,j) = 0 and B(i,j) = 0 if i > j and
  215: *>          j = 1,...,ILO-1 or i = IHI+1,...,N.
  216: *>          If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
  217: *> \endverbatim
  218: *>
  219: *> \param[out] LSCALE
  220: *> \verbatim
  221: *>          LSCALE is DOUBLE PRECISION array, dimension (N)
  222: *>          Details of the permutations and scaling factors applied
  223: *>          to the left side of A and B.  If PL(j) is the index of the
  224: *>          row interchanged with row j, and DL(j) is the scaling
  225: *>          factor applied to row j, then
  226: *>            LSCALE(j) = PL(j)  for j = 1,...,ILO-1
  227: *>                      = DL(j)  for j = ILO,...,IHI
  228: *>                      = PL(j)  for j = IHI+1,...,N.
  229: *>          The order in which the interchanges are made is N to IHI+1,
  230: *>          then 1 to ILO-1.
  231: *> \endverbatim
  232: *>
  233: *> \param[out] RSCALE
  234: *> \verbatim
  235: *>          RSCALE is DOUBLE PRECISION array, dimension (N)
  236: *>          Details of the permutations and scaling factors applied
  237: *>          to the right side of A and B.  If PR(j) is the index of the
  238: *>          column interchanged with column j, and DR(j) is the scaling
  239: *>          factor applied to column j, then
  240: *>            RSCALE(j) = PR(j)  for j = 1,...,ILO-1
  241: *>                      = DR(j)  for j = ILO,...,IHI
  242: *>                      = PR(j)  for j = IHI+1,...,N
  243: *>          The order in which the interchanges are made is N to IHI+1,
  244: *>          then 1 to ILO-1.
  245: *> \endverbatim
  246: *>
  247: *> \param[out] ABNRM
  248: *> \verbatim
  249: *>          ABNRM is DOUBLE PRECISION
  250: *>          The one-norm of the balanced matrix A.
  251: *> \endverbatim
  252: *>
  253: *> \param[out] BBNRM
  254: *> \verbatim
  255: *>          BBNRM is DOUBLE PRECISION
  256: *>          The one-norm of the balanced matrix B.
  257: *> \endverbatim
  258: *>
  259: *> \param[out] RCONDE
  260: *> \verbatim
  261: *>          RCONDE is DOUBLE PRECISION array, dimension (N)
  262: *>          If SENSE = 'E' or 'B', the reciprocal condition numbers of
  263: *>          the eigenvalues, stored in consecutive elements of the array.
  264: *>          If SENSE = 'N' or 'V', RCONDE is not referenced.
  265: *> \endverbatim
  266: *>
  267: *> \param[out] RCONDV
  268: *> \verbatim
  269: *>          RCONDV is DOUBLE PRECISION array, dimension (N)
  270: *>          If JOB = 'V' or 'B', the estimated reciprocal condition
  271: *>          numbers of the eigenvectors, stored in consecutive elements
  272: *>          of the array. If the eigenvalues cannot be reordered to
  273: *>          compute RCONDV(j), RCONDV(j) is set to 0; this can only occur
  274: *>          when the true value would be very small anyway.
  275: *>          If SENSE = 'N' or 'E', RCONDV is not referenced.
  276: *> \endverbatim
  277: *>
  278: *> \param[out] WORK
  279: *> \verbatim
  280: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  281: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  282: *> \endverbatim
  283: *>
  284: *> \param[in] LWORK
  285: *> \verbatim
  286: *>          LWORK is INTEGER
  287: *>          The dimension of the array WORK. LWORK >= max(1,2*N).
  288: *>          If SENSE = 'E', LWORK >= max(1,4*N).
  289: *>          If SENSE = 'V' or 'B', LWORK >= max(1,2*N*N+2*N).
  290: *>
  291: *>          If LWORK = -1, then a workspace query is assumed; the routine
  292: *>          only calculates the optimal size of the WORK array, returns
  293: *>          this value as the first entry of the WORK array, and no error
  294: *>          message related to LWORK is issued by XERBLA.
  295: *> \endverbatim
  296: *>
  297: *> \param[out] RWORK
  298: *> \verbatim
  299: *>          RWORK is DOUBLE PRECISION array, dimension (lrwork)
  300: *>          lrwork must be at least max(1,6*N) if BALANC = 'S' or 'B',
  301: *>          and at least max(1,2*N) otherwise.
  302: *>          Real workspace.
  303: *> \endverbatim
  304: *>
  305: *> \param[out] IWORK
  306: *> \verbatim
  307: *>          IWORK is INTEGER array, dimension (N+2)
  308: *>          If SENSE = 'E', IWORK is not referenced.
  309: *> \endverbatim
  310: *>
  311: *> \param[out] BWORK
  312: *> \verbatim
  313: *>          BWORK is LOGICAL array, dimension (N)
  314: *>          If SENSE = 'N', BWORK is not referenced.
  315: *> \endverbatim
  316: *>
  317: *> \param[out] INFO
  318: *> \verbatim
  319: *>          INFO is INTEGER
  320: *>          = 0:  successful exit
  321: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  322: *>          = 1,...,N:
  323: *>                The QZ iteration failed.  No eigenvectors have been
  324: *>                calculated, but ALPHA(j) and BETA(j) should be correct
  325: *>                for j=INFO+1,...,N.
  326: *>          > N:  =N+1: other than QZ iteration failed in ZHGEQZ.
  327: *>                =N+2: error return from ZTGEVC.
  328: *> \endverbatim
  329: *
  330: *  Authors:
  331: *  ========
  332: *
  333: *> \author Univ. of Tennessee
  334: *> \author Univ. of California Berkeley
  335: *> \author Univ. of Colorado Denver
  336: *> \author NAG Ltd.
  337: *
  338: *> \date April 2012
  339: *
  340: *> \ingroup complex16GEeigen
  341: *
  342: *> \par Further Details:
  343: *  =====================
  344: *>
  345: *> \verbatim
  346: *>
  347: *>  Balancing a matrix pair (A,B) includes, first, permuting rows and
  348: *>  columns to isolate eigenvalues, second, applying diagonal similarity
  349: *>  transformation to the rows and columns to make the rows and columns
  350: *>  as close in norm as possible. The computed reciprocal condition
  351: *>  numbers correspond to the balanced matrix. Permuting rows and columns
  352: *>  will not change the condition numbers (in exact arithmetic) but
  353: *>  diagonal scaling will.  For further explanation of balancing, see
  354: *>  section 4.11.1.2 of LAPACK Users' Guide.
  355: *>
  356: *>  An approximate error bound on the chordal distance between the i-th
  357: *>  computed generalized eigenvalue w and the corresponding exact
  358: *>  eigenvalue lambda is
  359: *>
  360: *>       chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
  361: *>
  362: *>  An approximate error bound for the angle between the i-th computed
  363: *>  eigenvector VL(i) or VR(i) is given by
  364: *>
  365: *>       EPS * norm(ABNRM, BBNRM) / DIF(i).
  366: *>
  367: *>  For further explanation of the reciprocal condition numbers RCONDE
  368: *>  and RCONDV, see section 4.11 of LAPACK User's Guide.
  369: *> \endverbatim
  370: *>
  371: *  =====================================================================
  372:       SUBROUTINE ZGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
  373:      $                   ALPHA, BETA, VL, LDVL, VR, LDVR, ILO, IHI,
  374:      $                   LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, RCONDV,
  375:      $                   WORK, LWORK, RWORK, IWORK, BWORK, INFO )
  376: *
  377: *  -- LAPACK driver routine (version 3.7.0) --
  378: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  379: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  380: *     April 2012
  381: *
  382: *     .. Scalar Arguments ..
  383:       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
  384:       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
  385:       DOUBLE PRECISION   ABNRM, BBNRM
  386: *     ..
  387: *     .. Array Arguments ..
  388:       LOGICAL            BWORK( * )
  389:       INTEGER            IWORK( * )
  390:       DOUBLE PRECISION   LSCALE( * ), RCONDE( * ), RCONDV( * ),
  391:      $                   RSCALE( * ), RWORK( * )
  392:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
  393:      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
  394:      $                   WORK( * )
  395: *     ..
  396: *
  397: *  =====================================================================
  398: *
  399: *     .. Parameters ..
  400:       DOUBLE PRECISION   ZERO, ONE
  401:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  402:       COMPLEX*16         CZERO, CONE
  403:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  404:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  405: *     ..
  406: *     .. Local Scalars ..
  407:       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY, NOSCL,
  408:      $                   WANTSB, WANTSE, WANTSN, WANTSV
  409:       CHARACTER          CHTEMP
  410:       INTEGER            I, ICOLS, IERR, IJOBVL, IJOBVR, IN, IROWS,
  411:      $                   ITAU, IWRK, IWRK1, J, JC, JR, M, MAXWRK, MINWRK
  412:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
  413:      $                   SMLNUM, TEMP
  414:       COMPLEX*16         X
  415: *     ..
  416: *     .. Local Arrays ..
  417:       LOGICAL            LDUMMA( 1 )
  418: *     ..
  419: *     .. External Subroutines ..
  420:       EXTERNAL           DLABAD, DLASCL, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL,
  421:      $                   ZGGHRD, ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGEVC,
  422:      $                   ZTGSNA, ZUNGQR, ZUNMQR
  423: *     ..
  424: *     .. External Functions ..
  425:       LOGICAL            LSAME
  426:       INTEGER            ILAENV
  427:       DOUBLE PRECISION   DLAMCH, ZLANGE
  428:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
  429: *     ..
  430: *     .. Intrinsic Functions ..
  431:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
  432: *     ..
  433: *     .. Statement Functions ..
  434:       DOUBLE PRECISION   ABS1
  435: *     ..
  436: *     .. Statement Function definitions ..
  437:       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
  438: *     ..
  439: *     .. Executable Statements ..
  440: *
  441: *     Decode the input arguments
  442: *
  443:       IF( LSAME( JOBVL, 'N' ) ) THEN
  444:          IJOBVL = 1
  445:          ILVL = .FALSE.
  446:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
  447:          IJOBVL = 2
  448:          ILVL = .TRUE.
  449:       ELSE
  450:          IJOBVL = -1
  451:          ILVL = .FALSE.
  452:       END IF
  453: *
  454:       IF( LSAME( JOBVR, 'N' ) ) THEN
  455:          IJOBVR = 1
  456:          ILVR = .FALSE.
  457:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
  458:          IJOBVR = 2
  459:          ILVR = .TRUE.
  460:       ELSE
  461:          IJOBVR = -1
  462:          ILVR = .FALSE.
  463:       END IF
  464:       ILV = ILVL .OR. ILVR
  465: *
  466:       NOSCL  = LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'P' )
  467:       WANTSN = LSAME( SENSE, 'N' )
  468:       WANTSE = LSAME( SENSE, 'E' )
  469:       WANTSV = LSAME( SENSE, 'V' )
  470:       WANTSB = LSAME( SENSE, 'B' )
  471: *
  472: *     Test the input arguments
  473: *
  474:       INFO = 0
  475:       LQUERY = ( LWORK.EQ.-1 )
  476:       IF( .NOT.( NOSCL .OR. LSAME( BALANC,'S' ) .OR.
  477:      $    LSAME( BALANC, 'B' ) ) ) THEN
  478:          INFO = -1
  479:       ELSE IF( IJOBVL.LE.0 ) THEN
  480:          INFO = -2
  481:       ELSE IF( IJOBVR.LE.0 ) THEN
  482:          INFO = -3
  483:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSB .OR. WANTSV ) )
  484:      $          THEN
  485:          INFO = -4
  486:       ELSE IF( N.LT.0 ) THEN
  487:          INFO = -5
  488:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  489:          INFO = -7
  490:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  491:          INFO = -9
  492:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
  493:          INFO = -13
  494:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
  495:          INFO = -15
  496:       END IF
  497: *
  498: *     Compute workspace
  499: *      (Note: Comments in the code beginning "Workspace:" describe the
  500: *       minimal amount of workspace needed at that point in the code,
  501: *       as well as the preferred amount for good performance.
  502: *       NB refers to the optimal block size for the immediately
  503: *       following subroutine, as returned by ILAENV. The workspace is
  504: *       computed assuming ILO = 1 and IHI = N, the worst case.)
  505: *
  506:       IF( INFO.EQ.0 ) THEN
  507:          IF( N.EQ.0 ) THEN
  508:             MINWRK = 1
  509:             MAXWRK = 1
  510:          ELSE
  511:             MINWRK = 2*N
  512:             IF( WANTSE ) THEN
  513:                MINWRK = 4*N
  514:             ELSE IF( WANTSV .OR. WANTSB ) THEN
  515:                MINWRK = 2*N*( N + 1)
  516:             END IF
  517:             MAXWRK = MINWRK
  518:             MAXWRK = MAX( MAXWRK,
  519:      $                    N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
  520:             MAXWRK = MAX( MAXWRK,
  521:      $                    N + N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, 0 ) )
  522:             IF( ILVL ) THEN
  523:                MAXWRK = MAX( MAXWRK, N +
  524:      $                       N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, 0 ) )
  525:             END IF
  526:          END IF
  527:          WORK( 1 ) = MAXWRK
  528: *
  529:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  530:             INFO = -25
  531:          END IF
  532:       END IF
  533: *
  534:       IF( INFO.NE.0 ) THEN
  535:          CALL XERBLA( 'ZGGEVX', -INFO )
  536:          RETURN
  537:       ELSE IF( LQUERY ) THEN
  538:          RETURN
  539:       END IF
  540: *
  541: *     Quick return if possible
  542: *
  543:       IF( N.EQ.0 )
  544:      $   RETURN
  545: *
  546: *     Get machine constants
  547: *
  548:       EPS = DLAMCH( 'P' )
  549:       SMLNUM = DLAMCH( 'S' )
  550:       BIGNUM = ONE / SMLNUM
  551:       CALL DLABAD( SMLNUM, BIGNUM )
  552:       SMLNUM = SQRT( SMLNUM ) / EPS
  553:       BIGNUM = ONE / SMLNUM
  554: *
  555: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  556: *
  557:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
  558:       ILASCL = .FALSE.
  559:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  560:          ANRMTO = SMLNUM
  561:          ILASCL = .TRUE.
  562:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  563:          ANRMTO = BIGNUM
  564:          ILASCL = .TRUE.
  565:       END IF
  566:       IF( ILASCL )
  567:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  568: *
  569: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  570: *
  571:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
  572:       ILBSCL = .FALSE.
  573:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  574:          BNRMTO = SMLNUM
  575:          ILBSCL = .TRUE.
  576:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  577:          BNRMTO = BIGNUM
  578:          ILBSCL = .TRUE.
  579:       END IF
  580:       IF( ILBSCL )
  581:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  582: *
  583: *     Permute and/or balance the matrix pair (A,B)
  584: *     (Real Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise)
  585: *
  586:       CALL ZGGBAL( BALANC, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
  587:      $             RWORK, IERR )
  588: *
  589: *     Compute ABNRM and BBNRM
  590: *
  591:       ABNRM = ZLANGE( '1', N, N, A, LDA, RWORK( 1 ) )
  592:       IF( ILASCL ) THEN
  593:          RWORK( 1 ) = ABNRM
  594:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, 1, 1, RWORK( 1 ), 1,
  595:      $                IERR )
  596:          ABNRM = RWORK( 1 )
  597:       END IF
  598: *
  599:       BBNRM = ZLANGE( '1', N, N, B, LDB, RWORK( 1 ) )
  600:       IF( ILBSCL ) THEN
  601:          RWORK( 1 ) = BBNRM
  602:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, 1, 1, RWORK( 1 ), 1,
  603:      $                IERR )
  604:          BBNRM = RWORK( 1 )
  605:       END IF
  606: *
  607: *     Reduce B to triangular form (QR decomposition of B)
  608: *     (Complex Workspace: need N, prefer N*NB )
  609: *
  610:       IROWS = IHI + 1 - ILO
  611:       IF( ILV .OR. .NOT.WANTSN ) THEN
  612:          ICOLS = N + 1 - ILO
  613:       ELSE
  614:          ICOLS = IROWS
  615:       END IF
  616:       ITAU = 1
  617:       IWRK = ITAU + IROWS
  618:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  619:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
  620: *
  621: *     Apply the unitary transformation to A
  622: *     (Complex Workspace: need N, prefer N*NB)
  623: *
  624:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  625:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  626:      $             LWORK+1-IWRK, IERR )
  627: *
  628: *     Initialize VL and/or VR
  629: *     (Workspace: need N, prefer N*NB)
  630: *
  631:       IF( ILVL ) THEN
  632:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
  633:          IF( IROWS.GT.1 ) THEN
  634:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  635:      $                   VL( ILO+1, ILO ), LDVL )
  636:          END IF
  637:          CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
  638:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  639:       END IF
  640: *
  641:       IF( ILVR )
  642:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
  643: *
  644: *     Reduce to generalized Hessenberg form
  645: *     (Workspace: none needed)
  646: *
  647:       IF( ILV .OR. .NOT.WANTSN ) THEN
  648: *
  649: *        Eigenvectors requested -- work on whole matrix.
  650: *
  651:          CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
  652:      $                LDVL, VR, LDVR, IERR )
  653:       ELSE
  654:          CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
  655:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
  656:       END IF
  657: *
  658: *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
  659: *     Schur forms and Schur vectors)
  660: *     (Complex Workspace: need N)
  661: *     (Real Workspace: need N)
  662: *
  663:       IWRK = ITAU
  664:       IF( ILV .OR. .NOT.WANTSN ) THEN
  665:          CHTEMP = 'S'
  666:       ELSE
  667:          CHTEMP = 'E'
  668:       END IF
  669: *
  670:       CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
  671:      $             ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
  672:      $             LWORK+1-IWRK, RWORK, IERR )
  673:       IF( IERR.NE.0 ) THEN
  674:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  675:             INFO = IERR
  676:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  677:             INFO = IERR - N
  678:          ELSE
  679:             INFO = N + 1
  680:          END IF
  681:          GO TO 90
  682:       END IF
  683: *
  684: *     Compute Eigenvectors and estimate condition numbers if desired
  685: *     ZTGEVC: (Complex Workspace: need 2*N )
  686: *             (Real Workspace:    need 2*N )
  687: *     ZTGSNA: (Complex Workspace: need 2*N*N if SENSE='V' or 'B')
  688: *             (Integer Workspace: need N+2 )
  689: *
  690:       IF( ILV .OR. .NOT.WANTSN ) THEN
  691:          IF( ILV ) THEN
  692:             IF( ILVL ) THEN
  693:                IF( ILVR ) THEN
  694:                   CHTEMP = 'B'
  695:                ELSE
  696:                   CHTEMP = 'L'
  697:                END IF
  698:             ELSE
  699:                CHTEMP = 'R'
  700:             END IF
  701: *
  702:             CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL,
  703:      $                   LDVL, VR, LDVR, N, IN, WORK( IWRK ), RWORK,
  704:      $                   IERR )
  705:             IF( IERR.NE.0 ) THEN
  706:                INFO = N + 2
  707:                GO TO 90
  708:             END IF
  709:          END IF
  710: *
  711:          IF( .NOT.WANTSN ) THEN
  712: *
  713: *           compute eigenvectors (DTGEVC) and estimate condition
  714: *           numbers (DTGSNA). Note that the definition of the condition
  715: *           number is not invariant under transformation (u,v) to
  716: *           (Q*u, Z*v), where (u,v) are eigenvectors of the generalized
  717: *           Schur form (S,T), Q and Z are orthogonal matrices. In order
  718: *           to avoid using extra 2*N*N workspace, we have to
  719: *           re-calculate eigenvectors and estimate the condition numbers
  720: *           one at a time.
  721: *
  722:             DO 20 I = 1, N
  723: *
  724:                DO 10 J = 1, N
  725:                   BWORK( J ) = .FALSE.
  726:    10          CONTINUE
  727:                BWORK( I ) = .TRUE.
  728: *
  729:                IWRK = N + 1
  730:                IWRK1 = IWRK + N
  731: *
  732:                IF( WANTSE .OR. WANTSB ) THEN
  733:                   CALL ZTGEVC( 'B', 'S', BWORK, N, A, LDA, B, LDB,
  734:      $                         WORK( 1 ), N, WORK( IWRK ), N, 1, M,
  735:      $                         WORK( IWRK1 ), RWORK, IERR )
  736:                   IF( IERR.NE.0 ) THEN
  737:                      INFO = N + 2
  738:                      GO TO 90
  739:                   END IF
  740:                END IF
  741: *
  742:                CALL ZTGSNA( SENSE, 'S', BWORK, N, A, LDA, B, LDB,
  743:      $                      WORK( 1 ), N, WORK( IWRK ), N, RCONDE( I ),
  744:      $                      RCONDV( I ), 1, M, WORK( IWRK1 ),
  745:      $                      LWORK-IWRK1+1, IWORK, IERR )
  746: *
  747:    20       CONTINUE
  748:          END IF
  749:       END IF
  750: *
  751: *     Undo balancing on VL and VR and normalization
  752: *     (Workspace: none needed)
  753: *
  754:       IF( ILVL ) THEN
  755:          CALL ZGGBAK( BALANC, 'L', N, ILO, IHI, LSCALE, RSCALE, N, VL,
  756:      $                LDVL, IERR )
  757: *
  758:          DO 50 JC = 1, N
  759:             TEMP = ZERO
  760:             DO 30 JR = 1, N
  761:                TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
  762:    30       CONTINUE
  763:             IF( TEMP.LT.SMLNUM )
  764:      $         GO TO 50
  765:             TEMP = ONE / TEMP
  766:             DO 40 JR = 1, N
  767:                VL( JR, JC ) = VL( JR, JC )*TEMP
  768:    40       CONTINUE
  769:    50    CONTINUE
  770:       END IF
  771: *
  772:       IF( ILVR ) THEN
  773:          CALL ZGGBAK( BALANC, 'R', N, ILO, IHI, LSCALE, RSCALE, N, VR,
  774:      $                LDVR, IERR )
  775:          DO 80 JC = 1, N
  776:             TEMP = ZERO
  777:             DO 60 JR = 1, N
  778:                TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
  779:    60       CONTINUE
  780:             IF( TEMP.LT.SMLNUM )
  781:      $         GO TO 80
  782:             TEMP = ONE / TEMP
  783:             DO 70 JR = 1, N
  784:                VR( JR, JC ) = VR( JR, JC )*TEMP
  785:    70       CONTINUE
  786:    80    CONTINUE
  787:       END IF
  788: *
  789: *     Undo scaling if necessary
  790: *
  791:    90 CONTINUE
  792: *
  793:       IF( ILASCL )
  794:      $   CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
  795: *
  796:       IF( ILBSCL )
  797:      $   CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  798: *
  799:       WORK( 1 ) = MAXWRK
  800:       RETURN
  801: *
  802: *     End of ZGGEVX
  803: *
  804:       END

CVSweb interface <joel.bertrand@systella.fr>