Annotation of rpl/lapack/lapack/zggevx.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE ZGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
                      2:      $                   ALPHA, BETA, VL, LDVL, VR, LDVR, ILO, IHI,
                      3:      $                   LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, RCONDV,
                      4:      $                   WORK, LWORK, RWORK, IWORK, BWORK, INFO )
                      5: *
                      6: *  -- LAPACK driver routine (version 3.2) --
                      7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      9: *     November 2006
                     10: *
                     11: *     .. Scalar Arguments ..
                     12:       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
                     13:       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
                     14:       DOUBLE PRECISION   ABNRM, BBNRM
                     15: *     ..
                     16: *     .. Array Arguments ..
                     17:       LOGICAL            BWORK( * )
                     18:       INTEGER            IWORK( * )
                     19:       DOUBLE PRECISION   LSCALE( * ), RCONDE( * ), RCONDV( * ),
                     20:      $                   RSCALE( * ), RWORK( * )
                     21:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                     22:      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
                     23:      $                   WORK( * )
                     24: *     ..
                     25: *
                     26: *  Purpose
                     27: *  =======
                     28: *
                     29: *  ZGGEVX computes for a pair of N-by-N complex nonsymmetric matrices
                     30: *  (A,B) the generalized eigenvalues, and optionally, the left and/or
                     31: *  right generalized eigenvectors.
                     32: *
                     33: *  Optionally, it also computes a balancing transformation to improve
                     34: *  the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
                     35: *  LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
                     36: *  the eigenvalues (RCONDE), and reciprocal condition numbers for the
                     37: *  right eigenvectors (RCONDV).
                     38: *
                     39: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar
                     40: *  lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
                     41: *  singular. It is usually represented as the pair (alpha,beta), as
                     42: *  there is a reasonable interpretation for beta=0, and even for both
                     43: *  being zero.
                     44: *
                     45: *  The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
                     46: *  of (A,B) satisfies
                     47: *                   A * v(j) = lambda(j) * B * v(j) .
                     48: *  The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
                     49: *  of (A,B) satisfies
                     50: *                   u(j)**H * A  = lambda(j) * u(j)**H * B.
                     51: *  where u(j)**H is the conjugate-transpose of u(j).
                     52: *
                     53: *
                     54: *  Arguments
                     55: *  =========
                     56: *
                     57: *  BALANC  (input) CHARACTER*1
                     58: *          Specifies the balance option to be performed:
                     59: *          = 'N':  do not diagonally scale or permute;
                     60: *          = 'P':  permute only;
                     61: *          = 'S':  scale only;
                     62: *          = 'B':  both permute and scale.
                     63: *          Computed reciprocal condition numbers will be for the
                     64: *          matrices after permuting and/or balancing. Permuting does
                     65: *          not change condition numbers (in exact arithmetic), but
                     66: *          balancing does.
                     67: *
                     68: *  JOBVL   (input) CHARACTER*1
                     69: *          = 'N':  do not compute the left generalized eigenvectors;
                     70: *          = 'V':  compute the left generalized eigenvectors.
                     71: *
                     72: *  JOBVR   (input) CHARACTER*1
                     73: *          = 'N':  do not compute the right generalized eigenvectors;
                     74: *          = 'V':  compute the right generalized eigenvectors.
                     75: *
                     76: *  SENSE   (input) CHARACTER*1
                     77: *          Determines which reciprocal condition numbers are computed.
                     78: *          = 'N': none are computed;
                     79: *          = 'E': computed for eigenvalues only;
                     80: *          = 'V': computed for eigenvectors only;
                     81: *          = 'B': computed for eigenvalues and eigenvectors.
                     82: *
                     83: *  N       (input) INTEGER
                     84: *          The order of the matrices A, B, VL, and VR.  N >= 0.
                     85: *
                     86: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
                     87: *          On entry, the matrix A in the pair (A,B).
                     88: *          On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
                     89: *          or both, then A contains the first part of the complex Schur
                     90: *          form of the "balanced" versions of the input A and B.
                     91: *
                     92: *  LDA     (input) INTEGER
                     93: *          The leading dimension of A.  LDA >= max(1,N).
                     94: *
                     95: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
                     96: *          On entry, the matrix B in the pair (A,B).
                     97: *          On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
                     98: *          or both, then B contains the second part of the complex
                     99: *          Schur form of the "balanced" versions of the input A and B.
                    100: *
                    101: *  LDB     (input) INTEGER
                    102: *          The leading dimension of B.  LDB >= max(1,N).
                    103: *
                    104: *  ALPHA   (output) COMPLEX*16 array, dimension (N)
                    105: *  BETA    (output) COMPLEX*16 array, dimension (N)
                    106: *          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized
                    107: *          eigenvalues.
                    108: *
                    109: *          Note: the quotient ALPHA(j)/BETA(j) ) may easily over- or
                    110: *          underflow, and BETA(j) may even be zero.  Thus, the user
                    111: *          should avoid naively computing the ratio ALPHA/BETA.
                    112: *          However, ALPHA will be always less than and usually
                    113: *          comparable with norm(A) in magnitude, and BETA always less
                    114: *          than and usually comparable with norm(B).
                    115: *
                    116: *  VL      (output) COMPLEX*16 array, dimension (LDVL,N)
                    117: *          If JOBVL = 'V', the left generalized eigenvectors u(j) are
                    118: *          stored one after another in the columns of VL, in the same
                    119: *          order as their eigenvalues.
                    120: *          Each eigenvector will be scaled so the largest component
                    121: *          will have abs(real part) + abs(imag. part) = 1.
                    122: *          Not referenced if JOBVL = 'N'.
                    123: *
                    124: *  LDVL    (input) INTEGER
                    125: *          The leading dimension of the matrix VL. LDVL >= 1, and
                    126: *          if JOBVL = 'V', LDVL >= N.
                    127: *
                    128: *  VR      (output) COMPLEX*16 array, dimension (LDVR,N)
                    129: *          If JOBVR = 'V', the right generalized eigenvectors v(j) are
                    130: *          stored one after another in the columns of VR, in the same
                    131: *          order as their eigenvalues.
                    132: *          Each eigenvector will be scaled so the largest component
                    133: *          will have abs(real part) + abs(imag. part) = 1.
                    134: *          Not referenced if JOBVR = 'N'.
                    135: *
                    136: *  LDVR    (input) INTEGER
                    137: *          The leading dimension of the matrix VR. LDVR >= 1, and
                    138: *          if JOBVR = 'V', LDVR >= N.
                    139: *
                    140: *  ILO     (output) INTEGER
                    141: *  IHI     (output) INTEGER
                    142: *          ILO and IHI are integer values such that on exit
                    143: *          A(i,j) = 0 and B(i,j) = 0 if i > j and
                    144: *          j = 1,...,ILO-1 or i = IHI+1,...,N.
                    145: *          If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
                    146: *
                    147: *  LSCALE  (output) DOUBLE PRECISION array, dimension (N)
                    148: *          Details of the permutations and scaling factors applied
                    149: *          to the left side of A and B.  If PL(j) is the index of the
                    150: *          row interchanged with row j, and DL(j) is the scaling
                    151: *          factor applied to row j, then
                    152: *            LSCALE(j) = PL(j)  for j = 1,...,ILO-1
                    153: *                      = DL(j)  for j = ILO,...,IHI
                    154: *                      = PL(j)  for j = IHI+1,...,N.
                    155: *          The order in which the interchanges are made is N to IHI+1,
                    156: *          then 1 to ILO-1.
                    157: *
                    158: *  RSCALE  (output) DOUBLE PRECISION array, dimension (N)
                    159: *          Details of the permutations and scaling factors applied
                    160: *          to the right side of A and B.  If PR(j) is the index of the
                    161: *          column interchanged with column j, and DR(j) is the scaling
                    162: *          factor applied to column j, then
                    163: *            RSCALE(j) = PR(j)  for j = 1,...,ILO-1
                    164: *                      = DR(j)  for j = ILO,...,IHI
                    165: *                      = PR(j)  for j = IHI+1,...,N
                    166: *          The order in which the interchanges are made is N to IHI+1,
                    167: *          then 1 to ILO-1.
                    168: *
                    169: *  ABNRM   (output) DOUBLE PRECISION
                    170: *          The one-norm of the balanced matrix A.
                    171: *
                    172: *  BBNRM   (output) DOUBLE PRECISION
                    173: *          The one-norm of the balanced matrix B.
                    174: *
                    175: *  RCONDE  (output) DOUBLE PRECISION array, dimension (N)
                    176: *          If SENSE = 'E' or 'B', the reciprocal condition numbers of
                    177: *          the eigenvalues, stored in consecutive elements of the array.
                    178: *          If SENSE = 'N' or 'V', RCONDE is not referenced.
                    179: *
                    180: *  RCONDV  (output) DOUBLE PRECISION array, dimension (N)
                    181: *          If JOB = 'V' or 'B', the estimated reciprocal condition
                    182: *          numbers of the eigenvectors, stored in consecutive elements
                    183: *          of the array. If the eigenvalues cannot be reordered to
                    184: *          compute RCONDV(j), RCONDV(j) is set to 0; this can only occur
                    185: *          when the true value would be very small anyway.
                    186: *          If SENSE = 'N' or 'E', RCONDV is not referenced.
                    187: *
                    188: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                    189: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    190: *
                    191: *  LWORK   (input) INTEGER
                    192: *          The dimension of the array WORK. LWORK >= max(1,2*N).
                    193: *          If SENSE = 'E', LWORK >= max(1,4*N).
                    194: *          If SENSE = 'V' or 'B', LWORK >= max(1,2*N*N+2*N).
                    195: *
                    196: *          If LWORK = -1, then a workspace query is assumed; the routine
                    197: *          only calculates the optimal size of the WORK array, returns
                    198: *          this value as the first entry of the WORK array, and no error
                    199: *          message related to LWORK is issued by XERBLA.
                    200: *
                    201: *  RWORK   (workspace) REAL array, dimension (lrwork)
                    202: *          lrwork must be at least max(1,6*N) if BALANC = 'S' or 'B',
                    203: *          and at least max(1,2*N) otherwise.
                    204: *          Real workspace.
                    205: *
                    206: *  IWORK   (workspace) INTEGER array, dimension (N+2)
                    207: *          If SENSE = 'E', IWORK is not referenced.
                    208: *
                    209: *  BWORK   (workspace) LOGICAL array, dimension (N)
                    210: *          If SENSE = 'N', BWORK is not referenced.
                    211: *
                    212: *  INFO    (output) INTEGER
                    213: *          = 0:  successful exit
                    214: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    215: *          = 1,...,N:
                    216: *                The QZ iteration failed.  No eigenvectors have been
                    217: *                calculated, but ALPHA(j) and BETA(j) should be correct
                    218: *                for j=INFO+1,...,N.
                    219: *          > N:  =N+1: other than QZ iteration failed in ZHGEQZ.
                    220: *                =N+2: error return from ZTGEVC.
                    221: *
                    222: *  Further Details
                    223: *  ===============
                    224: *
                    225: *  Balancing a matrix pair (A,B) includes, first, permuting rows and
                    226: *  columns to isolate eigenvalues, second, applying diagonal similarity
                    227: *  transformation to the rows and columns to make the rows and columns
                    228: *  as close in norm as possible. The computed reciprocal condition
                    229: *  numbers correspond to the balanced matrix. Permuting rows and columns
                    230: *  will not change the condition numbers (in exact arithmetic) but
                    231: *  diagonal scaling will.  For further explanation of balancing, see
                    232: *  section 4.11.1.2 of LAPACK Users' Guide.
                    233: *
                    234: *  An approximate error bound on the chordal distance between the i-th
                    235: *  computed generalized eigenvalue w and the corresponding exact
                    236: *  eigenvalue lambda is
                    237: *
                    238: *       chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
                    239: *
                    240: *  An approximate error bound for the angle between the i-th computed
                    241: *  eigenvector VL(i) or VR(i) is given by
                    242: *
                    243: *       EPS * norm(ABNRM, BBNRM) / DIF(i).
                    244: *
                    245: *  For further explanation of the reciprocal condition numbers RCONDE
                    246: *  and RCONDV, see section 4.11 of LAPACK User's Guide.
                    247: *
                    248: *     .. Parameters ..
                    249:       DOUBLE PRECISION   ZERO, ONE
                    250:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    251:       COMPLEX*16         CZERO, CONE
                    252:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    253:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    254: *     ..
                    255: *     .. Local Scalars ..
                    256:       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY, NOSCL,
                    257:      $                   WANTSB, WANTSE, WANTSN, WANTSV
                    258:       CHARACTER          CHTEMP
                    259:       INTEGER            I, ICOLS, IERR, IJOBVL, IJOBVR, IN, IROWS,
                    260:      $                   ITAU, IWRK, IWRK1, J, JC, JR, M, MAXWRK, MINWRK
                    261:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
                    262:      $                   SMLNUM, TEMP
                    263:       COMPLEX*16         X
                    264: *     ..
                    265: *     .. Local Arrays ..
                    266:       LOGICAL            LDUMMA( 1 )
                    267: *     ..
                    268: *     .. External Subroutines ..
                    269:       EXTERNAL           DLABAD, DLASCL, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL,
                    270:      $                   ZGGHRD, ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGEVC,
                    271:      $                   ZTGSNA, ZUNGQR, ZUNMQR
                    272: *     ..
                    273: *     .. External Functions ..
                    274:       LOGICAL            LSAME
                    275:       INTEGER            ILAENV
                    276:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    277:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
                    278: *     ..
                    279: *     .. Intrinsic Functions ..
                    280:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
                    281: *     ..
                    282: *     .. Statement Functions ..
                    283:       DOUBLE PRECISION   ABS1
                    284: *     ..
                    285: *     .. Statement Function definitions ..
                    286:       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
                    287: *     ..
                    288: *     .. Executable Statements ..
                    289: *
                    290: *     Decode the input arguments
                    291: *
                    292:       IF( LSAME( JOBVL, 'N' ) ) THEN
                    293:          IJOBVL = 1
                    294:          ILVL = .FALSE.
                    295:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
                    296:          IJOBVL = 2
                    297:          ILVL = .TRUE.
                    298:       ELSE
                    299:          IJOBVL = -1
                    300:          ILVL = .FALSE.
                    301:       END IF
                    302: *
                    303:       IF( LSAME( JOBVR, 'N' ) ) THEN
                    304:          IJOBVR = 1
                    305:          ILVR = .FALSE.
                    306:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
                    307:          IJOBVR = 2
                    308:          ILVR = .TRUE.
                    309:       ELSE
                    310:          IJOBVR = -1
                    311:          ILVR = .FALSE.
                    312:       END IF
                    313:       ILV = ILVL .OR. ILVR
                    314: *
                    315:       NOSCL  = LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'P' )
                    316:       WANTSN = LSAME( SENSE, 'N' )
                    317:       WANTSE = LSAME( SENSE, 'E' )
                    318:       WANTSV = LSAME( SENSE, 'V' )
                    319:       WANTSB = LSAME( SENSE, 'B' )
                    320: *
                    321: *     Test the input arguments
                    322: *
                    323:       INFO = 0
                    324:       LQUERY = ( LWORK.EQ.-1 )
                    325:       IF( .NOT.( NOSCL .OR. LSAME( BALANC,'S' ) .OR.
                    326:      $    LSAME( BALANC, 'B' ) ) ) THEN
                    327:          INFO = -1
                    328:       ELSE IF( IJOBVL.LE.0 ) THEN
                    329:          INFO = -2
                    330:       ELSE IF( IJOBVR.LE.0 ) THEN
                    331:          INFO = -3
                    332:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSB .OR. WANTSV ) )
                    333:      $          THEN
                    334:          INFO = -4
                    335:       ELSE IF( N.LT.0 ) THEN
                    336:          INFO = -5
                    337:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    338:          INFO = -7
                    339:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    340:          INFO = -9
                    341:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
                    342:          INFO = -13
                    343:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
                    344:          INFO = -15
                    345:       END IF
                    346: *
                    347: *     Compute workspace
                    348: *      (Note: Comments in the code beginning "Workspace:" describe the
                    349: *       minimal amount of workspace needed at that point in the code,
                    350: *       as well as the preferred amount for good performance.
                    351: *       NB refers to the optimal block size for the immediately
                    352: *       following subroutine, as returned by ILAENV. The workspace is
                    353: *       computed assuming ILO = 1 and IHI = N, the worst case.)
                    354: *
                    355:       IF( INFO.EQ.0 ) THEN
                    356:          IF( N.EQ.0 ) THEN
                    357:             MINWRK = 1
                    358:             MAXWRK = 1
                    359:          ELSE
                    360:             MINWRK = 2*N
                    361:             IF( WANTSE ) THEN
                    362:                MINWRK = 4*N
                    363:             ELSE IF( WANTSV .OR. WANTSB ) THEN
                    364:                MINWRK = 2*N*( N + 1)
                    365:             END IF
                    366:             MAXWRK = MINWRK
                    367:             MAXWRK = MAX( MAXWRK,
                    368:      $                    N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
                    369:             MAXWRK = MAX( MAXWRK,
                    370:      $                    N + N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, 0 ) )
                    371:             IF( ILVL ) THEN
                    372:                MAXWRK = MAX( MAXWRK, N +
                    373:      $                       N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, 0 ) )
                    374:             END IF 
                    375:          END IF
                    376:          WORK( 1 ) = MAXWRK
                    377: *
                    378:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    379:             INFO = -25
                    380:          END IF
                    381:       END IF
                    382: *
                    383:       IF( INFO.NE.0 ) THEN
                    384:          CALL XERBLA( 'ZGGEVX', -INFO )
                    385:          RETURN
                    386:       ELSE IF( LQUERY ) THEN
                    387:          RETURN
                    388:       END IF
                    389: *
                    390: *     Quick return if possible
                    391: *
                    392:       IF( N.EQ.0 )
                    393:      $   RETURN
                    394: *
                    395: *     Get machine constants
                    396: *
                    397:       EPS = DLAMCH( 'P' )
                    398:       SMLNUM = DLAMCH( 'S' )
                    399:       BIGNUM = ONE / SMLNUM
                    400:       CALL DLABAD( SMLNUM, BIGNUM )
                    401:       SMLNUM = SQRT( SMLNUM ) / EPS
                    402:       BIGNUM = ONE / SMLNUM
                    403: *
                    404: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    405: *
                    406:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
                    407:       ILASCL = .FALSE.
                    408:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    409:          ANRMTO = SMLNUM
                    410:          ILASCL = .TRUE.
                    411:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    412:          ANRMTO = BIGNUM
                    413:          ILASCL = .TRUE.
                    414:       END IF
                    415:       IF( ILASCL )
                    416:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
                    417: *
                    418: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    419: *
                    420:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
                    421:       ILBSCL = .FALSE.
                    422:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    423:          BNRMTO = SMLNUM
                    424:          ILBSCL = .TRUE.
                    425:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    426:          BNRMTO = BIGNUM
                    427:          ILBSCL = .TRUE.
                    428:       END IF
                    429:       IF( ILBSCL )
                    430:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
                    431: *
                    432: *     Permute and/or balance the matrix pair (A,B)
                    433: *     (Real Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise)
                    434: *
                    435:       CALL ZGGBAL( BALANC, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
                    436:      $             RWORK, IERR )
                    437: *
                    438: *     Compute ABNRM and BBNRM
                    439: *
                    440:       ABNRM = ZLANGE( '1', N, N, A, LDA, RWORK( 1 ) )
                    441:       IF( ILASCL ) THEN
                    442:          RWORK( 1 ) = ABNRM
                    443:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, 1, 1, RWORK( 1 ), 1,
                    444:      $                IERR )
                    445:          ABNRM = RWORK( 1 )
                    446:       END IF
                    447: *
                    448:       BBNRM = ZLANGE( '1', N, N, B, LDB, RWORK( 1 ) )
                    449:       IF( ILBSCL ) THEN
                    450:          RWORK( 1 ) = BBNRM
                    451:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, 1, 1, RWORK( 1 ), 1,
                    452:      $                IERR )
                    453:          BBNRM = RWORK( 1 )
                    454:       END IF
                    455: *
                    456: *     Reduce B to triangular form (QR decomposition of B)
                    457: *     (Complex Workspace: need N, prefer N*NB )
                    458: *
                    459:       IROWS = IHI + 1 - ILO
                    460:       IF( ILV .OR. .NOT.WANTSN ) THEN
                    461:          ICOLS = N + 1 - ILO
                    462:       ELSE
                    463:          ICOLS = IROWS
                    464:       END IF
                    465:       ITAU = 1
                    466:       IWRK = ITAU + IROWS
                    467:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    468:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    469: *
                    470: *     Apply the unitary transformation to A
                    471: *     (Complex Workspace: need N, prefer N*NB)
                    472: *
                    473:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    474:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
                    475:      $             LWORK+1-IWRK, IERR )
                    476: *
                    477: *     Initialize VL and/or VR
                    478: *     (Workspace: need N, prefer N*NB)
                    479: *
                    480:       IF( ILVL ) THEN
                    481:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
                    482:          IF( IROWS.GT.1 ) THEN
                    483:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    484:      $                   VL( ILO+1, ILO ), LDVL )
                    485:          END IF
                    486:          CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
                    487:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
                    488:       END IF
                    489: *
                    490:       IF( ILVR )
                    491:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
                    492: *
                    493: *     Reduce to generalized Hessenberg form
                    494: *     (Workspace: none needed)
                    495: *
                    496:       IF( ILV .OR. .NOT.WANTSN ) THEN
                    497: *
                    498: *        Eigenvectors requested -- work on whole matrix.
                    499: *
                    500:          CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
                    501:      $                LDVL, VR, LDVR, IERR )
                    502:       ELSE
                    503:          CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
                    504:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
                    505:       END IF
                    506: *
                    507: *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
                    508: *     Schur forms and Schur vectors)
                    509: *     (Complex Workspace: need N)
                    510: *     (Real Workspace: need N)
                    511: *
                    512:       IWRK = ITAU
                    513:       IF( ILV .OR. .NOT.WANTSN ) THEN
                    514:          CHTEMP = 'S'
                    515:       ELSE
                    516:          CHTEMP = 'E'
                    517:       END IF
                    518: *
                    519:       CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
                    520:      $             ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
                    521:      $             LWORK+1-IWRK, RWORK, IERR )
                    522:       IF( IERR.NE.0 ) THEN
                    523:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
                    524:             INFO = IERR
                    525:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
                    526:             INFO = IERR - N
                    527:          ELSE
                    528:             INFO = N + 1
                    529:          END IF
                    530:          GO TO 90
                    531:       END IF
                    532: *
                    533: *     Compute Eigenvectors and estimate condition numbers if desired
                    534: *     ZTGEVC: (Complex Workspace: need 2*N )
                    535: *             (Real Workspace:    need 2*N )
                    536: *     ZTGSNA: (Complex Workspace: need 2*N*N if SENSE='V' or 'B')
                    537: *             (Integer Workspace: need N+2 )
                    538: *
                    539:       IF( ILV .OR. .NOT.WANTSN ) THEN
                    540:          IF( ILV ) THEN
                    541:             IF( ILVL ) THEN
                    542:                IF( ILVR ) THEN
                    543:                   CHTEMP = 'B'
                    544:                ELSE
                    545:                   CHTEMP = 'L'
                    546:                END IF
                    547:             ELSE
                    548:                CHTEMP = 'R'
                    549:             END IF
                    550: *
                    551:             CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL,
                    552:      $                   LDVL, VR, LDVR, N, IN, WORK( IWRK ), RWORK,
                    553:      $                   IERR )
                    554:             IF( IERR.NE.0 ) THEN
                    555:                INFO = N + 2
                    556:                GO TO 90
                    557:             END IF
                    558:          END IF
                    559: *
                    560:          IF( .NOT.WANTSN ) THEN
                    561: *
                    562: *           compute eigenvectors (DTGEVC) and estimate condition
                    563: *           numbers (DTGSNA). Note that the definition of the condition
                    564: *           number is not invariant under transformation (u,v) to
                    565: *           (Q*u, Z*v), where (u,v) are eigenvectors of the generalized
                    566: *           Schur form (S,T), Q and Z are orthogonal matrices. In order
                    567: *           to avoid using extra 2*N*N workspace, we have to
                    568: *           re-calculate eigenvectors and estimate the condition numbers
                    569: *           one at a time.
                    570: *
                    571:             DO 20 I = 1, N
                    572: *
                    573:                DO 10 J = 1, N
                    574:                   BWORK( J ) = .FALSE.
                    575:    10          CONTINUE
                    576:                BWORK( I ) = .TRUE.
                    577: *
                    578:                IWRK = N + 1
                    579:                IWRK1 = IWRK + N
                    580: *
                    581:                IF( WANTSE .OR. WANTSB ) THEN
                    582:                   CALL ZTGEVC( 'B', 'S', BWORK, N, A, LDA, B, LDB,
                    583:      $                         WORK( 1 ), N, WORK( IWRK ), N, 1, M,
                    584:      $                         WORK( IWRK1 ), RWORK, IERR )
                    585:                   IF( IERR.NE.0 ) THEN
                    586:                      INFO = N + 2
                    587:                      GO TO 90
                    588:                   END IF
                    589:                END IF
                    590: *
                    591:                CALL ZTGSNA( SENSE, 'S', BWORK, N, A, LDA, B, LDB,
                    592:      $                      WORK( 1 ), N, WORK( IWRK ), N, RCONDE( I ),
                    593:      $                      RCONDV( I ), 1, M, WORK( IWRK1 ),
                    594:      $                      LWORK-IWRK1+1, IWORK, IERR )
                    595: *
                    596:    20       CONTINUE
                    597:          END IF
                    598:       END IF
                    599: *
                    600: *     Undo balancing on VL and VR and normalization
                    601: *     (Workspace: none needed)
                    602: *
                    603:       IF( ILVL ) THEN
                    604:          CALL ZGGBAK( BALANC, 'L', N, ILO, IHI, LSCALE, RSCALE, N, VL,
                    605:      $                LDVL, IERR )
                    606: *
                    607:          DO 50 JC = 1, N
                    608:             TEMP = ZERO
                    609:             DO 30 JR = 1, N
                    610:                TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
                    611:    30       CONTINUE
                    612:             IF( TEMP.LT.SMLNUM )
                    613:      $         GO TO 50
                    614:             TEMP = ONE / TEMP
                    615:             DO 40 JR = 1, N
                    616:                VL( JR, JC ) = VL( JR, JC )*TEMP
                    617:    40       CONTINUE
                    618:    50    CONTINUE
                    619:       END IF
                    620: *
                    621:       IF( ILVR ) THEN
                    622:          CALL ZGGBAK( BALANC, 'R', N, ILO, IHI, LSCALE, RSCALE, N, VR,
                    623:      $                LDVR, IERR )
                    624:          DO 80 JC = 1, N
                    625:             TEMP = ZERO
                    626:             DO 60 JR = 1, N
                    627:                TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
                    628:    60       CONTINUE
                    629:             IF( TEMP.LT.SMLNUM )
                    630:      $         GO TO 80
                    631:             TEMP = ONE / TEMP
                    632:             DO 70 JR = 1, N
                    633:                VR( JR, JC ) = VR( JR, JC )*TEMP
                    634:    70       CONTINUE
                    635:    80    CONTINUE
                    636:       END IF
                    637: *
                    638: *     Undo scaling if necessary
                    639: *
                    640:       IF( ILASCL )
                    641:      $   CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
                    642: *
                    643:       IF( ILBSCL )
                    644:      $   CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    645: *
                    646:    90 CONTINUE
                    647:       WORK( 1 ) = MAXWRK
                    648: *
                    649:       RETURN
                    650: *
                    651: *     End of ZGGEVX
                    652: *
                    653:       END

CVSweb interface <joel.bertrand@systella.fr>