Annotation of rpl/lapack/lapack/zggev3.f, revision 1.1

1.1     ! bertrand    1: *> \brief <b> ZGGEV3 computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices (blocked algorithm)</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZGGEV3 + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggev3.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggev3.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggev3.f">
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
        !            22: *                          VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
        !            23: *
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          JOBVL, JOBVR
        !            26: *       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       DOUBLE PRECISION   RWORK( * )
        !            30: *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
        !            31: *      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
        !            32: *      $                   WORK( * )
        !            33: *       ..
        !            34: *
        !            35: *
        !            36: *> \par Purpose:
        !            37: *  =============
        !            38: *>
        !            39: *> \verbatim
        !            40: *>
        !            41: *> ZGGEV3 computes for a pair of N-by-N complex nonsymmetric matrices
        !            42: *> (A,B), the generalized eigenvalues, and optionally, the left and/or
        !            43: *> right generalized eigenvectors.
        !            44: *>
        !            45: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
        !            46: *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
        !            47: *> singular. It is usually represented as the pair (alpha,beta), as
        !            48: *> there is a reasonable interpretation for beta=0, and even for both
        !            49: *> being zero.
        !            50: *>
        !            51: *> The right generalized eigenvector v(j) corresponding to the
        !            52: *> generalized eigenvalue lambda(j) of (A,B) satisfies
        !            53: *>
        !            54: *>              A * v(j) = lambda(j) * B * v(j).
        !            55: *>
        !            56: *> The left generalized eigenvector u(j) corresponding to the
        !            57: *> generalized eigenvalues lambda(j) of (A,B) satisfies
        !            58: *>
        !            59: *>              u(j)**H * A = lambda(j) * u(j)**H * B
        !            60: *>
        !            61: *> where u(j)**H is the conjugate-transpose of u(j).
        !            62: *> \endverbatim
        !            63: *
        !            64: *  Arguments:
        !            65: *  ==========
        !            66: *
        !            67: *> \param[in] JOBVL
        !            68: *> \verbatim
        !            69: *>          JOBVL is CHARACTER*1
        !            70: *>          = 'N':  do not compute the left generalized eigenvectors;
        !            71: *>          = 'V':  compute the left generalized eigenvectors.
        !            72: *> \endverbatim
        !            73: *>
        !            74: *> \param[in] JOBVR
        !            75: *> \verbatim
        !            76: *>          JOBVR is CHARACTER*1
        !            77: *>          = 'N':  do not compute the right generalized eigenvectors;
        !            78: *>          = 'V':  compute the right generalized eigenvectors.
        !            79: *> \endverbatim
        !            80: *>
        !            81: *> \param[in] N
        !            82: *> \verbatim
        !            83: *>          N is INTEGER
        !            84: *>          The order of the matrices A, B, VL, and VR.  N >= 0.
        !            85: *> \endverbatim
        !            86: *>
        !            87: *> \param[in,out] A
        !            88: *> \verbatim
        !            89: *>          A is COMPLEX*16 array, dimension (LDA, N)
        !            90: *>          On entry, the matrix A in the pair (A,B).
        !            91: *>          On exit, A has been overwritten.
        !            92: *> \endverbatim
        !            93: *>
        !            94: *> \param[in] LDA
        !            95: *> \verbatim
        !            96: *>          LDA is INTEGER
        !            97: *>          The leading dimension of A.  LDA >= max(1,N).
        !            98: *> \endverbatim
        !            99: *>
        !           100: *> \param[in,out] B
        !           101: *> \verbatim
        !           102: *>          B is COMPLEX*16 array, dimension (LDB, N)
        !           103: *>          On entry, the matrix B in the pair (A,B).
        !           104: *>          On exit, B has been overwritten.
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[in] LDB
        !           108: *> \verbatim
        !           109: *>          LDB is INTEGER
        !           110: *>          The leading dimension of B.  LDB >= max(1,N).
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[out] ALPHA
        !           114: *> \verbatim
        !           115: *>          ALPHA is COMPLEX*16 array, dimension (N)
        !           116: *> \endverbatim
        !           117: *>
        !           118: *> \param[out] BETA
        !           119: *> \verbatim
        !           120: *>          BETA is COMPLEX*16 array, dimension (N)
        !           121: *>          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
        !           122: *>          generalized eigenvalues.
        !           123: *>
        !           124: *>          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
        !           125: *>          underflow, and BETA(j) may even be zero.  Thus, the user
        !           126: *>          should avoid naively computing the ratio alpha/beta.
        !           127: *>          However, ALPHA will be always less than and usually
        !           128: *>          comparable with norm(A) in magnitude, and BETA always less
        !           129: *>          than and usually comparable with norm(B).
        !           130: *> \endverbatim
        !           131: *>
        !           132: *> \param[out] VL
        !           133: *> \verbatim
        !           134: *>          VL is COMPLEX*16 array, dimension (LDVL,N)
        !           135: *>          If JOBVL = 'V', the left generalized eigenvectors u(j) are
        !           136: *>          stored one after another in the columns of VL, in the same
        !           137: *>          order as their eigenvalues.
        !           138: *>          Each eigenvector is scaled so the largest component has
        !           139: *>          abs(real part) + abs(imag. part) = 1.
        !           140: *>          Not referenced if JOBVL = 'N'.
        !           141: *> \endverbatim
        !           142: *>
        !           143: *> \param[in] LDVL
        !           144: *> \verbatim
        !           145: *>          LDVL is INTEGER
        !           146: *>          The leading dimension of the matrix VL. LDVL >= 1, and
        !           147: *>          if JOBVL = 'V', LDVL >= N.
        !           148: *> \endverbatim
        !           149: *>
        !           150: *> \param[out] VR
        !           151: *> \verbatim
        !           152: *>          VR is COMPLEX*16 array, dimension (LDVR,N)
        !           153: *>          If JOBVR = 'V', the right generalized eigenvectors v(j) are
        !           154: *>          stored one after another in the columns of VR, in the same
        !           155: *>          order as their eigenvalues.
        !           156: *>          Each eigenvector is scaled so the largest component has
        !           157: *>          abs(real part) + abs(imag. part) = 1.
        !           158: *>          Not referenced if JOBVR = 'N'.
        !           159: *> \endverbatim
        !           160: *>
        !           161: *> \param[in] LDVR
        !           162: *> \verbatim
        !           163: *>          LDVR is INTEGER
        !           164: *>          The leading dimension of the matrix VR. LDVR >= 1, and
        !           165: *>          if JOBVR = 'V', LDVR >= N.
        !           166: *> \endverbatim
        !           167: *>
        !           168: *> \param[out] WORK
        !           169: *> \verbatim
        !           170: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           171: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           172: *> \endverbatim
        !           173: *>
        !           174: *> \param[in] LWORK
        !           175: *> \verbatim
        !           176: *>          LWORK is INTEGER
        !           177: *>          The dimension of the array WORK.
        !           178: *>
        !           179: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           180: *>          only calculates the optimal size of the WORK array, returns
        !           181: *>          this value as the first entry of the WORK array, and no error
        !           182: *>          message related to LWORK is issued by XERBLA.
        !           183: *> \endverbatim
        !           184: *>
        !           185: *> \param[out] RWORK
        !           186: *> \verbatim
        !           187: *>          RWORK is DOUBLE PRECISION array, dimension (8*N)
        !           188: *> \endverbatim
        !           189: *>
        !           190: *> \param[out] INFO
        !           191: *> \verbatim
        !           192: *>          INFO is INTEGER
        !           193: *>          = 0:  successful exit
        !           194: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           195: *>          =1,...,N:
        !           196: *>                The QZ iteration failed.  No eigenvectors have been
        !           197: *>                calculated, but ALPHA(j) and BETA(j) should be
        !           198: *>                correct for j=INFO+1,...,N.
        !           199: *>          > N:  =N+1: other then QZ iteration failed in DHGEQZ,
        !           200: *>                =N+2: error return from DTGEVC.
        !           201: *> \endverbatim
        !           202: *
        !           203: *  Authors:
        !           204: *  ========
        !           205: *
        !           206: *> \author Univ. of Tennessee
        !           207: *> \author Univ. of California Berkeley
        !           208: *> \author Univ. of Colorado Denver
        !           209: *> \author NAG Ltd.
        !           210: *
        !           211: *> \date January 2015
        !           212: *
        !           213: *> \ingroup complex16GEeigen
        !           214: *
        !           215: *  =====================================================================
        !           216:       SUBROUTINE ZGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
        !           217:      $                   VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
        !           218: *
        !           219: *  -- LAPACK driver routine (version 3.6.0) --
        !           220: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           221: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           222: *     January 2015
        !           223: *
        !           224: *     .. Scalar Arguments ..
        !           225:       CHARACTER          JOBVL, JOBVR
        !           226:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
        !           227: *     ..
        !           228: *     .. Array Arguments ..
        !           229:       DOUBLE PRECISION   RWORK( * )
        !           230:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
        !           231:      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
        !           232:      $                   WORK( * )
        !           233: *     ..
        !           234: *
        !           235: *  =====================================================================
        !           236: *
        !           237: *     .. Parameters ..
        !           238:       DOUBLE PRECISION   ZERO, ONE
        !           239:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           240:       COMPLEX*16         CZERO, CONE
        !           241:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
        !           242:      $                   CONE = ( 1.0D0, 0.0D0 ) )
        !           243: *     ..
        !           244: *     .. Local Scalars ..
        !           245:       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
        !           246:       CHARACTER          CHTEMP
        !           247:       INTEGER            ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
        !           248:      $                   IN, IRIGHT, IROWS, IRWRK, ITAU, IWRK, JC, JR,
        !           249:      $                   LWKOPT
        !           250:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
        !           251:      $                   SMLNUM, TEMP
        !           252:       COMPLEX*16         X
        !           253: *     ..
        !           254: *     .. Local Arrays ..
        !           255:       LOGICAL            LDUMMA( 1 )
        !           256: *     ..
        !           257: *     .. External Subroutines ..
        !           258:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHD3,
        !           259:      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR,
        !           260:      $                   ZUNMQR
        !           261: *     ..
        !           262: *     .. External Functions ..
        !           263:       LOGICAL            LSAME
        !           264:       DOUBLE PRECISION   DLAMCH, ZLANGE
        !           265:       EXTERNAL           LSAME, DLAMCH, ZLANGE
        !           266: *     ..
        !           267: *     .. Intrinsic Functions ..
        !           268:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
        !           269: *     ..
        !           270: *     .. Statement Functions ..
        !           271:       DOUBLE PRECISION   ABS1
        !           272: *     ..
        !           273: *     .. Statement Function definitions ..
        !           274:       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
        !           275: *     ..
        !           276: *     .. Executable Statements ..
        !           277: *
        !           278: *     Decode the input arguments
        !           279: *
        !           280:       IF( LSAME( JOBVL, 'N' ) ) THEN
        !           281:          IJOBVL = 1
        !           282:          ILVL = .FALSE.
        !           283:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
        !           284:          IJOBVL = 2
        !           285:          ILVL = .TRUE.
        !           286:       ELSE
        !           287:          IJOBVL = -1
        !           288:          ILVL = .FALSE.
        !           289:       END IF
        !           290: *
        !           291:       IF( LSAME( JOBVR, 'N' ) ) THEN
        !           292:          IJOBVR = 1
        !           293:          ILVR = .FALSE.
        !           294:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
        !           295:          IJOBVR = 2
        !           296:          ILVR = .TRUE.
        !           297:       ELSE
        !           298:          IJOBVR = -1
        !           299:          ILVR = .FALSE.
        !           300:       END IF
        !           301:       ILV = ILVL .OR. ILVR
        !           302: *
        !           303: *     Test the input arguments
        !           304: *
        !           305:       INFO = 0
        !           306:       LQUERY = ( LWORK.EQ.-1 )
        !           307:       IF( IJOBVL.LE.0 ) THEN
        !           308:          INFO = -1
        !           309:       ELSE IF( IJOBVR.LE.0 ) THEN
        !           310:          INFO = -2
        !           311:       ELSE IF( N.LT.0 ) THEN
        !           312:          INFO = -3
        !           313:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           314:          INFO = -5
        !           315:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           316:          INFO = -7
        !           317:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
        !           318:          INFO = -11
        !           319:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
        !           320:          INFO = -13
        !           321:       ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
        !           322:          INFO = -15
        !           323:       END IF
        !           324: *
        !           325: *     Compute workspace
        !           326: *
        !           327:       IF( INFO.EQ.0 ) THEN
        !           328:          CALL ZGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR )
        !           329:          LWKOPT = MAX( 1,  N+INT( WORK( 1 ) ) )
        !           330:          CALL ZUNMQR( 'L', 'C', N, N, N, B, LDB, WORK, A, LDA, WORK,
        !           331:      $                -1, IERR )
        !           332:          LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
        !           333:          IF( ILVL ) THEN
        !           334:             CALL ZUNGQR( N, N, N, VL, LDVL, WORK, WORK, -1, IERR )
        !           335:             LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
        !           336:          END IF
        !           337:          IF( ILV ) THEN
        !           338:             CALL ZGGHD3( JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB, VL,
        !           339:      $                   LDVL, VR, LDVR, WORK, -1, IERR )
        !           340:             LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
        !           341:             CALL ZHGEQZ( 'S', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB,
        !           342:      $                   ALPHA, BETA, VL, LDVL, VR, LDVR, WORK, -1,
        !           343:      $                   WORK, IERR )
        !           344:             LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
        !           345:          ELSE
        !           346:             CALL ZGGHD3( JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB, VL,
        !           347:      $                   LDVL, VR, LDVR, WORK, -1, IERR )
        !           348:             LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
        !           349:             CALL ZHGEQZ( 'E', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB,
        !           350:      $                   ALPHA, BETA, VL, LDVL, VR, LDVR, WORK, -1,
        !           351:      $                   WORK, IERR )
        !           352:             LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
        !           353:          END IF
        !           354:          WORK( 1 ) = DCMPLX( LWKOPT )
        !           355:       END IF
        !           356: *
        !           357:       IF( INFO.NE.0 ) THEN
        !           358:          CALL XERBLA( 'ZGGEV3 ', -INFO )
        !           359:          RETURN
        !           360:       ELSE IF( LQUERY ) THEN
        !           361:          RETURN
        !           362:       END IF
        !           363: *
        !           364: *     Quick return if possible
        !           365: *
        !           366:       IF( N.EQ.0 )
        !           367:      $   RETURN
        !           368: *
        !           369: *     Get machine constants
        !           370: *
        !           371:       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
        !           372:       SMLNUM = DLAMCH( 'S' )
        !           373:       BIGNUM = ONE / SMLNUM
        !           374:       CALL DLABAD( SMLNUM, BIGNUM )
        !           375:       SMLNUM = SQRT( SMLNUM ) / EPS
        !           376:       BIGNUM = ONE / SMLNUM
        !           377: *
        !           378: *     Scale A if max element outside range [SMLNUM,BIGNUM]
        !           379: *
        !           380:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
        !           381:       ILASCL = .FALSE.
        !           382:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           383:          ANRMTO = SMLNUM
        !           384:          ILASCL = .TRUE.
        !           385:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           386:          ANRMTO = BIGNUM
        !           387:          ILASCL = .TRUE.
        !           388:       END IF
        !           389:       IF( ILASCL )
        !           390:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
        !           391: *
        !           392: *     Scale B if max element outside range [SMLNUM,BIGNUM]
        !           393: *
        !           394:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
        !           395:       ILBSCL = .FALSE.
        !           396:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
        !           397:          BNRMTO = SMLNUM
        !           398:          ILBSCL = .TRUE.
        !           399:       ELSE IF( BNRM.GT.BIGNUM ) THEN
        !           400:          BNRMTO = BIGNUM
        !           401:          ILBSCL = .TRUE.
        !           402:       END IF
        !           403:       IF( ILBSCL )
        !           404:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
        !           405: *
        !           406: *     Permute the matrices A, B to isolate eigenvalues if possible
        !           407: *
        !           408:       ILEFT = 1
        !           409:       IRIGHT = N + 1
        !           410:       IRWRK = IRIGHT + N
        !           411:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
        !           412:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
        !           413: *
        !           414: *     Reduce B to triangular form (QR decomposition of B)
        !           415: *
        !           416:       IROWS = IHI + 1 - ILO
        !           417:       IF( ILV ) THEN
        !           418:          ICOLS = N + 1 - ILO
        !           419:       ELSE
        !           420:          ICOLS = IROWS
        !           421:       END IF
        !           422:       ITAU = 1
        !           423:       IWRK = ITAU + IROWS
        !           424:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
        !           425:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           426: *
        !           427: *     Apply the orthogonal transformation to matrix A
        !           428: *
        !           429:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
        !           430:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
        !           431:      $             LWORK+1-IWRK, IERR )
        !           432: *
        !           433: *     Initialize VL
        !           434: *
        !           435:       IF( ILVL ) THEN
        !           436:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
        !           437:          IF( IROWS.GT.1 ) THEN
        !           438:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
        !           439:      $                   VL( ILO+1, ILO ), LDVL )
        !           440:          END IF
        !           441:          CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
        !           442:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           443:       END IF
        !           444: *
        !           445: *     Initialize VR
        !           446: *
        !           447:       IF( ILVR )
        !           448:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
        !           449: *
        !           450: *     Reduce to generalized Hessenberg form
        !           451: *
        !           452:       IF( ILV ) THEN
        !           453: *
        !           454: *        Eigenvectors requested -- work on whole matrix.
        !           455: *
        !           456:          CALL ZGGHD3( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
        !           457:      $                LDVL, VR, LDVR, WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           458:       ELSE
        !           459:          CALL ZGGHD3( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
        !           460:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR,
        !           461:      $                WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           462:       END IF
        !           463: *
        !           464: *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
        !           465: *     Schur form and Schur vectors)
        !           466: *
        !           467:       IWRK = ITAU
        !           468:       IF( ILV ) THEN
        !           469:          CHTEMP = 'S'
        !           470:       ELSE
        !           471:          CHTEMP = 'E'
        !           472:       END IF
        !           473:       CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
        !           474:      $             ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
        !           475:      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
        !           476:       IF( IERR.NE.0 ) THEN
        !           477:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
        !           478:             INFO = IERR
        !           479:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
        !           480:             INFO = IERR - N
        !           481:          ELSE
        !           482:             INFO = N + 1
        !           483:          END IF
        !           484:          GO TO 70
        !           485:       END IF
        !           486: *
        !           487: *     Compute Eigenvectors
        !           488: *
        !           489:       IF( ILV ) THEN
        !           490:          IF( ILVL ) THEN
        !           491:             IF( ILVR ) THEN
        !           492:                CHTEMP = 'B'
        !           493:             ELSE
        !           494:                CHTEMP = 'L'
        !           495:             END IF
        !           496:          ELSE
        !           497:             CHTEMP = 'R'
        !           498:          END IF
        !           499: *
        !           500:          CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
        !           501:      $                VR, LDVR, N, IN, WORK( IWRK ), RWORK( IRWRK ),
        !           502:      $                IERR )
        !           503:          IF( IERR.NE.0 ) THEN
        !           504:             INFO = N + 2
        !           505:             GO TO 70
        !           506:          END IF
        !           507: *
        !           508: *        Undo balancing on VL and VR and normalization
        !           509: *
        !           510:          IF( ILVL ) THEN
        !           511:             CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
        !           512:      $                   RWORK( IRIGHT ), N, VL, LDVL, IERR )
        !           513:             DO 30 JC = 1, N
        !           514:                TEMP = ZERO
        !           515:                DO 10 JR = 1, N
        !           516:                   TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
        !           517:    10          CONTINUE
        !           518:                IF( TEMP.LT.SMLNUM )
        !           519:      $            GO TO 30
        !           520:                TEMP = ONE / TEMP
        !           521:                DO 20 JR = 1, N
        !           522:                   VL( JR, JC ) = VL( JR, JC )*TEMP
        !           523:    20          CONTINUE
        !           524:    30       CONTINUE
        !           525:          END IF
        !           526:          IF( ILVR ) THEN
        !           527:             CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
        !           528:      $                   RWORK( IRIGHT ), N, VR, LDVR, IERR )
        !           529:             DO 60 JC = 1, N
        !           530:                TEMP = ZERO
        !           531:                DO 40 JR = 1, N
        !           532:                   TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
        !           533:    40          CONTINUE
        !           534:                IF( TEMP.LT.SMLNUM )
        !           535:      $            GO TO 60
        !           536:                TEMP = ONE / TEMP
        !           537:                DO 50 JR = 1, N
        !           538:                   VR( JR, JC ) = VR( JR, JC )*TEMP
        !           539:    50          CONTINUE
        !           540:    60       CONTINUE
        !           541:          END IF
        !           542:       END IF
        !           543: *
        !           544: *     Undo scaling if necessary
        !           545: *
        !           546:    70 CONTINUE
        !           547: *
        !           548:       IF( ILASCL )
        !           549:      $   CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
        !           550: *
        !           551:       IF( ILBSCL )
        !           552:      $   CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
        !           553: *
        !           554:       WORK( 1 ) = DCMPLX( LWKOPT )
        !           555:       RETURN
        !           556: *
        !           557: *     End of ZGGEV3
        !           558: *
        !           559:       END

CVSweb interface <joel.bertrand@systella.fr>