File:  [local] / rpl / lapack / lapack / zggev.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:46 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief <b> ZGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZGGEV + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggev.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggev.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggev.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
   22: *                         VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          JOBVL, JOBVR
   26: *       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   RWORK( * )
   30: *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
   31: *      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
   32: *      $                   WORK( * )
   33: *       ..
   34: *  
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> ZGGEV computes for a pair of N-by-N complex nonsymmetric matrices
   42: *> (A,B), the generalized eigenvalues, and optionally, the left and/or
   43: *> right generalized eigenvectors.
   44: *>
   45: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
   46: *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
   47: *> singular. It is usually represented as the pair (alpha,beta), as
   48: *> there is a reasonable interpretation for beta=0, and even for both
   49: *> being zero.
   50: *>
   51: *> The right generalized eigenvector v(j) corresponding to the
   52: *> generalized eigenvalue lambda(j) of (A,B) satisfies
   53: *>
   54: *>              A * v(j) = lambda(j) * B * v(j).
   55: *>
   56: *> The left generalized eigenvector u(j) corresponding to the
   57: *> generalized eigenvalues lambda(j) of (A,B) satisfies
   58: *>
   59: *>              u(j)**H * A = lambda(j) * u(j)**H * B
   60: *>
   61: *> where u(j)**H is the conjugate-transpose of u(j).
   62: *> \endverbatim
   63: *
   64: *  Arguments:
   65: *  ==========
   66: *
   67: *> \param[in] JOBVL
   68: *> \verbatim
   69: *>          JOBVL is CHARACTER*1
   70: *>          = 'N':  do not compute the left generalized eigenvectors;
   71: *>          = 'V':  compute the left generalized eigenvectors.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] JOBVR
   75: *> \verbatim
   76: *>          JOBVR is CHARACTER*1
   77: *>          = 'N':  do not compute the right generalized eigenvectors;
   78: *>          = 'V':  compute the right generalized eigenvectors.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] N
   82: *> \verbatim
   83: *>          N is INTEGER
   84: *>          The order of the matrices A, B, VL, and VR.  N >= 0.
   85: *> \endverbatim
   86: *>
   87: *> \param[in,out] A
   88: *> \verbatim
   89: *>          A is COMPLEX*16 array, dimension (LDA, N)
   90: *>          On entry, the matrix A in the pair (A,B).
   91: *>          On exit, A has been overwritten.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] LDA
   95: *> \verbatim
   96: *>          LDA is INTEGER
   97: *>          The leading dimension of A.  LDA >= max(1,N).
   98: *> \endverbatim
   99: *>
  100: *> \param[in,out] B
  101: *> \verbatim
  102: *>          B is COMPLEX*16 array, dimension (LDB, N)
  103: *>          On entry, the matrix B in the pair (A,B).
  104: *>          On exit, B has been overwritten.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] LDB
  108: *> \verbatim
  109: *>          LDB is INTEGER
  110: *>          The leading dimension of B.  LDB >= max(1,N).
  111: *> \endverbatim
  112: *>
  113: *> \param[out] ALPHA
  114: *> \verbatim
  115: *>          ALPHA is COMPLEX*16 array, dimension (N)
  116: *> \endverbatim
  117: *>
  118: *> \param[out] BETA
  119: *> \verbatim
  120: *>          BETA is COMPLEX*16 array, dimension (N)
  121: *>          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
  122: *>          generalized eigenvalues.
  123: *>
  124: *>          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
  125: *>          underflow, and BETA(j) may even be zero.  Thus, the user
  126: *>          should avoid naively computing the ratio alpha/beta.
  127: *>          However, ALPHA will be always less than and usually
  128: *>          comparable with norm(A) in magnitude, and BETA always less
  129: *>          than and usually comparable with norm(B).
  130: *> \endverbatim
  131: *>
  132: *> \param[out] VL
  133: *> \verbatim
  134: *>          VL is COMPLEX*16 array, dimension (LDVL,N)
  135: *>          If JOBVL = 'V', the left generalized eigenvectors u(j) are
  136: *>          stored one after another in the columns of VL, in the same
  137: *>          order as their eigenvalues.
  138: *>          Each eigenvector is scaled so the largest component has
  139: *>          abs(real part) + abs(imag. part) = 1.
  140: *>          Not referenced if JOBVL = 'N'.
  141: *> \endverbatim
  142: *>
  143: *> \param[in] LDVL
  144: *> \verbatim
  145: *>          LDVL is INTEGER
  146: *>          The leading dimension of the matrix VL. LDVL >= 1, and
  147: *>          if JOBVL = 'V', LDVL >= N.
  148: *> \endverbatim
  149: *>
  150: *> \param[out] VR
  151: *> \verbatim
  152: *>          VR is COMPLEX*16 array, dimension (LDVR,N)
  153: *>          If JOBVR = 'V', the right generalized eigenvectors v(j) are
  154: *>          stored one after another in the columns of VR, in the same
  155: *>          order as their eigenvalues.
  156: *>          Each eigenvector is scaled so the largest component has
  157: *>          abs(real part) + abs(imag. part) = 1.
  158: *>          Not referenced if JOBVR = 'N'.
  159: *> \endverbatim
  160: *>
  161: *> \param[in] LDVR
  162: *> \verbatim
  163: *>          LDVR is INTEGER
  164: *>          The leading dimension of the matrix VR. LDVR >= 1, and
  165: *>          if JOBVR = 'V', LDVR >= N.
  166: *> \endverbatim
  167: *>
  168: *> \param[out] WORK
  169: *> \verbatim
  170: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  171: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  172: *> \endverbatim
  173: *>
  174: *> \param[in] LWORK
  175: *> \verbatim
  176: *>          LWORK is INTEGER
  177: *>          The dimension of the array WORK.  LWORK >= max(1,2*N).
  178: *>          For good performance, LWORK must generally be larger.
  179: *>
  180: *>          If LWORK = -1, then a workspace query is assumed; the routine
  181: *>          only calculates the optimal size of the WORK array, returns
  182: *>          this value as the first entry of the WORK array, and no error
  183: *>          message related to LWORK is issued by XERBLA.
  184: *> \endverbatim
  185: *>
  186: *> \param[out] RWORK
  187: *> \verbatim
  188: *>          RWORK is DOUBLE PRECISION array, dimension (8*N)
  189: *> \endverbatim
  190: *>
  191: *> \param[out] INFO
  192: *> \verbatim
  193: *>          INFO is INTEGER
  194: *>          = 0:  successful exit
  195: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  196: *>          =1,...,N:
  197: *>                The QZ iteration failed.  No eigenvectors have been
  198: *>                calculated, but ALPHA(j) and BETA(j) should be
  199: *>                correct for j=INFO+1,...,N.
  200: *>          > N:  =N+1: other then QZ iteration failed in DHGEQZ,
  201: *>                =N+2: error return from DTGEVC.
  202: *> \endverbatim
  203: *
  204: *  Authors:
  205: *  ========
  206: *
  207: *> \author Univ. of Tennessee 
  208: *> \author Univ. of California Berkeley 
  209: *> \author Univ. of Colorado Denver 
  210: *> \author NAG Ltd. 
  211: *
  212: *> \date November 2011
  213: *
  214: *> \ingroup complex16GEeigen
  215: *
  216: *  =====================================================================
  217:       SUBROUTINE ZGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
  218:      $                  VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
  219: *
  220: *  -- LAPACK driver routine (version 3.4.0) --
  221: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  222: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  223: *     November 2011
  224: *
  225: *     .. Scalar Arguments ..
  226:       CHARACTER          JOBVL, JOBVR
  227:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
  228: *     ..
  229: *     .. Array Arguments ..
  230:       DOUBLE PRECISION   RWORK( * )
  231:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
  232:      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
  233:      $                   WORK( * )
  234: *     ..
  235: *
  236: *  =====================================================================
  237: *
  238: *     .. Parameters ..
  239:       DOUBLE PRECISION   ZERO, ONE
  240:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  241:       COMPLEX*16         CZERO, CONE
  242:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
  243:      $                   CONE = ( 1.0D0, 0.0D0 ) )
  244: *     ..
  245: *     .. Local Scalars ..
  246:       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
  247:       CHARACTER          CHTEMP
  248:       INTEGER            ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
  249:      $                   IN, IRIGHT, IROWS, IRWRK, ITAU, IWRK, JC, JR,
  250:      $                   LWKMIN, LWKOPT
  251:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
  252:      $                   SMLNUM, TEMP
  253:       COMPLEX*16         X
  254: *     ..
  255: *     .. Local Arrays ..
  256:       LOGICAL            LDUMMA( 1 )
  257: *     ..
  258: *     .. External Subroutines ..
  259:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
  260:      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR,
  261:      $                   ZUNMQR
  262: *     ..
  263: *     .. External Functions ..
  264:       LOGICAL            LSAME
  265:       INTEGER            ILAENV
  266:       DOUBLE PRECISION   DLAMCH, ZLANGE
  267:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
  268: *     ..
  269: *     .. Intrinsic Functions ..
  270:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
  271: *     ..
  272: *     .. Statement Functions ..
  273:       DOUBLE PRECISION   ABS1
  274: *     ..
  275: *     .. Statement Function definitions ..
  276:       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
  277: *     ..
  278: *     .. Executable Statements ..
  279: *
  280: *     Decode the input arguments
  281: *
  282:       IF( LSAME( JOBVL, 'N' ) ) THEN
  283:          IJOBVL = 1
  284:          ILVL = .FALSE.
  285:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
  286:          IJOBVL = 2
  287:          ILVL = .TRUE.
  288:       ELSE
  289:          IJOBVL = -1
  290:          ILVL = .FALSE.
  291:       END IF
  292: *
  293:       IF( LSAME( JOBVR, 'N' ) ) THEN
  294:          IJOBVR = 1
  295:          ILVR = .FALSE.
  296:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
  297:          IJOBVR = 2
  298:          ILVR = .TRUE.
  299:       ELSE
  300:          IJOBVR = -1
  301:          ILVR = .FALSE.
  302:       END IF
  303:       ILV = ILVL .OR. ILVR
  304: *
  305: *     Test the input arguments
  306: *
  307:       INFO = 0
  308:       LQUERY = ( LWORK.EQ.-1 )
  309:       IF( IJOBVL.LE.0 ) THEN
  310:          INFO = -1
  311:       ELSE IF( IJOBVR.LE.0 ) THEN
  312:          INFO = -2
  313:       ELSE IF( N.LT.0 ) THEN
  314:          INFO = -3
  315:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  316:          INFO = -5
  317:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  318:          INFO = -7
  319:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
  320:          INFO = -11
  321:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
  322:          INFO = -13
  323:       END IF
  324: *
  325: *     Compute workspace
  326: *      (Note: Comments in the code beginning "Workspace:" describe the
  327: *       minimal amount of workspace needed at that point in the code,
  328: *       as well as the preferred amount for good performance.
  329: *       NB refers to the optimal block size for the immediately
  330: *       following subroutine, as returned by ILAENV. The workspace is
  331: *       computed assuming ILO = 1 and IHI = N, the worst case.)
  332: *
  333:       IF( INFO.EQ.0 ) THEN
  334:          LWKMIN = MAX( 1, 2*N )
  335:          LWKOPT = MAX( 1, N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
  336:          LWKOPT = MAX( LWKOPT, N +
  337:      $                 N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, 0 ) )
  338:          IF( ILVL ) THEN
  339:             LWKOPT = MAX( LWKOPT, N +
  340:      $                    N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) )
  341:          END IF
  342:          WORK( 1 ) = LWKOPT
  343: *
  344:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
  345:      $      INFO = -15
  346:       END IF
  347: *
  348:       IF( INFO.NE.0 ) THEN
  349:          CALL XERBLA( 'ZGGEV ', -INFO )
  350:          RETURN
  351:       ELSE IF( LQUERY ) THEN
  352:          RETURN
  353:       END IF
  354: *
  355: *     Quick return if possible
  356: *
  357:       IF( N.EQ.0 )
  358:      $   RETURN
  359: *
  360: *     Get machine constants
  361: *
  362:       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
  363:       SMLNUM = DLAMCH( 'S' )
  364:       BIGNUM = ONE / SMLNUM
  365:       CALL DLABAD( SMLNUM, BIGNUM )
  366:       SMLNUM = SQRT( SMLNUM ) / EPS
  367:       BIGNUM = ONE / SMLNUM
  368: *
  369: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  370: *
  371:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
  372:       ILASCL = .FALSE.
  373:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  374:          ANRMTO = SMLNUM
  375:          ILASCL = .TRUE.
  376:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  377:          ANRMTO = BIGNUM
  378:          ILASCL = .TRUE.
  379:       END IF
  380:       IF( ILASCL )
  381:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  382: *
  383: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  384: *
  385:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
  386:       ILBSCL = .FALSE.
  387:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  388:          BNRMTO = SMLNUM
  389:          ILBSCL = .TRUE.
  390:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  391:          BNRMTO = BIGNUM
  392:          ILBSCL = .TRUE.
  393:       END IF
  394:       IF( ILBSCL )
  395:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  396: *
  397: *     Permute the matrices A, B to isolate eigenvalues if possible
  398: *     (Real Workspace: need 6*N)
  399: *
  400:       ILEFT = 1
  401:       IRIGHT = N + 1
  402:       IRWRK = IRIGHT + N
  403:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
  404:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
  405: *
  406: *     Reduce B to triangular form (QR decomposition of B)
  407: *     (Complex Workspace: need N, prefer N*NB)
  408: *
  409:       IROWS = IHI + 1 - ILO
  410:       IF( ILV ) THEN
  411:          ICOLS = N + 1 - ILO
  412:       ELSE
  413:          ICOLS = IROWS
  414:       END IF
  415:       ITAU = 1
  416:       IWRK = ITAU + IROWS
  417:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  418:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
  419: *
  420: *     Apply the orthogonal transformation to matrix A
  421: *     (Complex Workspace: need N, prefer N*NB)
  422: *
  423:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  424:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  425:      $             LWORK+1-IWRK, IERR )
  426: *
  427: *     Initialize VL
  428: *     (Complex Workspace: need N, prefer N*NB)
  429: *
  430:       IF( ILVL ) THEN
  431:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
  432:          IF( IROWS.GT.1 ) THEN
  433:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  434:      $                   VL( ILO+1, ILO ), LDVL )
  435:          END IF
  436:          CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
  437:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  438:       END IF
  439: *
  440: *     Initialize VR
  441: *
  442:       IF( ILVR )
  443:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
  444: *
  445: *     Reduce to generalized Hessenberg form
  446: *
  447:       IF( ILV ) THEN
  448: *
  449: *        Eigenvectors requested -- work on whole matrix.
  450: *
  451:          CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
  452:      $                LDVL, VR, LDVR, IERR )
  453:       ELSE
  454:          CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
  455:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
  456:       END IF
  457: *
  458: *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
  459: *     Schur form and Schur vectors)
  460: *     (Complex Workspace: need N)
  461: *     (Real Workspace: need N)
  462: *
  463:       IWRK = ITAU
  464:       IF( ILV ) THEN
  465:          CHTEMP = 'S'
  466:       ELSE
  467:          CHTEMP = 'E'
  468:       END IF
  469:       CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
  470:      $             ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
  471:      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
  472:       IF( IERR.NE.0 ) THEN
  473:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  474:             INFO = IERR
  475:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  476:             INFO = IERR - N
  477:          ELSE
  478:             INFO = N + 1
  479:          END IF
  480:          GO TO 70
  481:       END IF
  482: *
  483: *     Compute Eigenvectors
  484: *     (Real Workspace: need 2*N)
  485: *     (Complex Workspace: need 2*N)
  486: *
  487:       IF( ILV ) THEN
  488:          IF( ILVL ) THEN
  489:             IF( ILVR ) THEN
  490:                CHTEMP = 'B'
  491:             ELSE
  492:                CHTEMP = 'L'
  493:             END IF
  494:          ELSE
  495:             CHTEMP = 'R'
  496:          END IF
  497: *
  498:          CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
  499:      $                VR, LDVR, N, IN, WORK( IWRK ), RWORK( IRWRK ),
  500:      $                IERR )
  501:          IF( IERR.NE.0 ) THEN
  502:             INFO = N + 2
  503:             GO TO 70
  504:          END IF
  505: *
  506: *        Undo balancing on VL and VR and normalization
  507: *        (Workspace: none needed)
  508: *
  509:          IF( ILVL ) THEN
  510:             CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
  511:      $                   RWORK( IRIGHT ), N, VL, LDVL, IERR )
  512:             DO 30 JC = 1, N
  513:                TEMP = ZERO
  514:                DO 10 JR = 1, N
  515:                   TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
  516:    10          CONTINUE
  517:                IF( TEMP.LT.SMLNUM )
  518:      $            GO TO 30
  519:                TEMP = ONE / TEMP
  520:                DO 20 JR = 1, N
  521:                   VL( JR, JC ) = VL( JR, JC )*TEMP
  522:    20          CONTINUE
  523:    30       CONTINUE
  524:          END IF
  525:          IF( ILVR ) THEN
  526:             CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
  527:      $                   RWORK( IRIGHT ), N, VR, LDVR, IERR )
  528:             DO 60 JC = 1, N
  529:                TEMP = ZERO
  530:                DO 40 JR = 1, N
  531:                   TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
  532:    40          CONTINUE
  533:                IF( TEMP.LT.SMLNUM )
  534:      $            GO TO 60
  535:                TEMP = ONE / TEMP
  536:                DO 50 JR = 1, N
  537:                   VR( JR, JC ) = VR( JR, JC )*TEMP
  538:    50          CONTINUE
  539:    60       CONTINUE
  540:          END IF
  541:       END IF
  542: *
  543: *     Undo scaling if necessary
  544: *
  545:       IF( ILASCL )
  546:      $   CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
  547: *
  548:       IF( ILBSCL )
  549:      $   CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  550: *
  551:    70 CONTINUE
  552:       WORK( 1 ) = LWKOPT
  553: *
  554:       RETURN
  555: *
  556: *     End of ZGGEV
  557: *
  558:       END

CVSweb interface <joel.bertrand@systella.fr>