File:  [local] / rpl / lapack / lapack / zggev.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:32 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE ZGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
    2:      $                  VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
    3: *
    4: *  -- LAPACK driver routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          JOBVL, JOBVR
   11:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       DOUBLE PRECISION   RWORK( * )
   15:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
   16:      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
   17:      $                   WORK( * )
   18: *     ..
   19: *
   20: *  Purpose
   21: *  =======
   22: *
   23: *  ZGGEV computes for a pair of N-by-N complex nonsymmetric matrices
   24: *  (A,B), the generalized eigenvalues, and optionally, the left and/or
   25: *  right generalized eigenvectors.
   26: *
   27: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar
   28: *  lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
   29: *  singular. It is usually represented as the pair (alpha,beta), as
   30: *  there is a reasonable interpretation for beta=0, and even for both
   31: *  being zero.
   32: *
   33: *  The right generalized eigenvector v(j) corresponding to the
   34: *  generalized eigenvalue lambda(j) of (A,B) satisfies
   35: *
   36: *               A * v(j) = lambda(j) * B * v(j).
   37: *
   38: *  The left generalized eigenvector u(j) corresponding to the
   39: *  generalized eigenvalues lambda(j) of (A,B) satisfies
   40: *
   41: *               u(j)**H * A = lambda(j) * u(j)**H * B
   42: *
   43: *  where u(j)**H is the conjugate-transpose of u(j).
   44: *
   45: *  Arguments
   46: *  =========
   47: *
   48: *  JOBVL   (input) CHARACTER*1
   49: *          = 'N':  do not compute the left generalized eigenvectors;
   50: *          = 'V':  compute the left generalized eigenvectors.
   51: *
   52: *  JOBVR   (input) CHARACTER*1
   53: *          = 'N':  do not compute the right generalized eigenvectors;
   54: *          = 'V':  compute the right generalized eigenvectors.
   55: *
   56: *  N       (input) INTEGER
   57: *          The order of the matrices A, B, VL, and VR.  N >= 0.
   58: *
   59: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
   60: *          On entry, the matrix A in the pair (A,B).
   61: *          On exit, A has been overwritten.
   62: *
   63: *  LDA     (input) INTEGER
   64: *          The leading dimension of A.  LDA >= max(1,N).
   65: *
   66: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
   67: *          On entry, the matrix B in the pair (A,B).
   68: *          On exit, B has been overwritten.
   69: *
   70: *  LDB     (input) INTEGER
   71: *          The leading dimension of B.  LDB >= max(1,N).
   72: *
   73: *  ALPHA   (output) COMPLEX*16 array, dimension (N)
   74: *  BETA    (output) COMPLEX*16 array, dimension (N)
   75: *          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
   76: *          generalized eigenvalues.
   77: *
   78: *          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
   79: *          underflow, and BETA(j) may even be zero.  Thus, the user
   80: *          should avoid naively computing the ratio alpha/beta.
   81: *          However, ALPHA will be always less than and usually
   82: *          comparable with norm(A) in magnitude, and BETA always less
   83: *          than and usually comparable with norm(B).
   84: *
   85: *  VL      (output) COMPLEX*16 array, dimension (LDVL,N)
   86: *          If JOBVL = 'V', the left generalized eigenvectors u(j) are
   87: *          stored one after another in the columns of VL, in the same
   88: *          order as their eigenvalues.
   89: *          Each eigenvector is scaled so the largest component has
   90: *          abs(real part) + abs(imag. part) = 1.
   91: *          Not referenced if JOBVL = 'N'.
   92: *
   93: *  LDVL    (input) INTEGER
   94: *          The leading dimension of the matrix VL. LDVL >= 1, and
   95: *          if JOBVL = 'V', LDVL >= N.
   96: *
   97: *  VR      (output) COMPLEX*16 array, dimension (LDVR,N)
   98: *          If JOBVR = 'V', the right generalized eigenvectors v(j) are
   99: *          stored one after another in the columns of VR, in the same
  100: *          order as their eigenvalues.
  101: *          Each eigenvector is scaled so the largest component has
  102: *          abs(real part) + abs(imag. part) = 1.
  103: *          Not referenced if JOBVR = 'N'.
  104: *
  105: *  LDVR    (input) INTEGER
  106: *          The leading dimension of the matrix VR. LDVR >= 1, and
  107: *          if JOBVR = 'V', LDVR >= N.
  108: *
  109: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
  110: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  111: *
  112: *  LWORK   (input) INTEGER
  113: *          The dimension of the array WORK.  LWORK >= max(1,2*N).
  114: *          For good performance, LWORK must generally be larger.
  115: *
  116: *          If LWORK = -1, then a workspace query is assumed; the routine
  117: *          only calculates the optimal size of the WORK array, returns
  118: *          this value as the first entry of the WORK array, and no error
  119: *          message related to LWORK is issued by XERBLA.
  120: *
  121: *  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (8*N)
  122: *
  123: *  INFO    (output) INTEGER
  124: *          = 0:  successful exit
  125: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  126: *          =1,...,N:
  127: *                The QZ iteration failed.  No eigenvectors have been
  128: *                calculated, but ALPHA(j) and BETA(j) should be
  129: *                correct for j=INFO+1,...,N.
  130: *          > N:  =N+1: other then QZ iteration failed in DHGEQZ,
  131: *                =N+2: error return from DTGEVC.
  132: *
  133: *  =====================================================================
  134: *
  135: *     .. Parameters ..
  136:       DOUBLE PRECISION   ZERO, ONE
  137:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  138:       COMPLEX*16         CZERO, CONE
  139:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
  140:      $                   CONE = ( 1.0D0, 0.0D0 ) )
  141: *     ..
  142: *     .. Local Scalars ..
  143:       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
  144:       CHARACTER          CHTEMP
  145:       INTEGER            ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
  146:      $                   IN, IRIGHT, IROWS, IRWRK, ITAU, IWRK, JC, JR,
  147:      $                   LWKMIN, LWKOPT
  148:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
  149:      $                   SMLNUM, TEMP
  150:       COMPLEX*16         X
  151: *     ..
  152: *     .. Local Arrays ..
  153:       LOGICAL            LDUMMA( 1 )
  154: *     ..
  155: *     .. External Subroutines ..
  156:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
  157:      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR,
  158:      $                   ZUNMQR
  159: *     ..
  160: *     .. External Functions ..
  161:       LOGICAL            LSAME
  162:       INTEGER            ILAENV
  163:       DOUBLE PRECISION   DLAMCH, ZLANGE
  164:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
  165: *     ..
  166: *     .. Intrinsic Functions ..
  167:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
  168: *     ..
  169: *     .. Statement Functions ..
  170:       DOUBLE PRECISION   ABS1
  171: *     ..
  172: *     .. Statement Function definitions ..
  173:       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
  174: *     ..
  175: *     .. Executable Statements ..
  176: *
  177: *     Decode the input arguments
  178: *
  179:       IF( LSAME( JOBVL, 'N' ) ) THEN
  180:          IJOBVL = 1
  181:          ILVL = .FALSE.
  182:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
  183:          IJOBVL = 2
  184:          ILVL = .TRUE.
  185:       ELSE
  186:          IJOBVL = -1
  187:          ILVL = .FALSE.
  188:       END IF
  189: *
  190:       IF( LSAME( JOBVR, 'N' ) ) THEN
  191:          IJOBVR = 1
  192:          ILVR = .FALSE.
  193:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
  194:          IJOBVR = 2
  195:          ILVR = .TRUE.
  196:       ELSE
  197:          IJOBVR = -1
  198:          ILVR = .FALSE.
  199:       END IF
  200:       ILV = ILVL .OR. ILVR
  201: *
  202: *     Test the input arguments
  203: *
  204:       INFO = 0
  205:       LQUERY = ( LWORK.EQ.-1 )
  206:       IF( IJOBVL.LE.0 ) THEN
  207:          INFO = -1
  208:       ELSE IF( IJOBVR.LE.0 ) THEN
  209:          INFO = -2
  210:       ELSE IF( N.LT.0 ) THEN
  211:          INFO = -3
  212:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  213:          INFO = -5
  214:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  215:          INFO = -7
  216:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
  217:          INFO = -11
  218:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
  219:          INFO = -13
  220:       END IF
  221: *
  222: *     Compute workspace
  223: *      (Note: Comments in the code beginning "Workspace:" describe the
  224: *       minimal amount of workspace needed at that point in the code,
  225: *       as well as the preferred amount for good performance.
  226: *       NB refers to the optimal block size for the immediately
  227: *       following subroutine, as returned by ILAENV. The workspace is
  228: *       computed assuming ILO = 1 and IHI = N, the worst case.)
  229: *
  230:       IF( INFO.EQ.0 ) THEN
  231:          LWKMIN = MAX( 1, 2*N )
  232:          LWKOPT = MAX( 1, N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
  233:          LWKOPT = MAX( LWKOPT, N +
  234:      $                 N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, 0 ) )
  235:          IF( ILVL ) THEN
  236:             LWKOPT = MAX( LWKOPT, N +
  237:      $                    N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) )
  238:          END IF
  239:          WORK( 1 ) = LWKOPT
  240: *
  241:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
  242:      $      INFO = -15
  243:       END IF
  244: *
  245:       IF( INFO.NE.0 ) THEN
  246:          CALL XERBLA( 'ZGGEV ', -INFO )
  247:          RETURN
  248:       ELSE IF( LQUERY ) THEN
  249:          RETURN
  250:       END IF
  251: *
  252: *     Quick return if possible
  253: *
  254:       IF( N.EQ.0 )
  255:      $   RETURN
  256: *
  257: *     Get machine constants
  258: *
  259:       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
  260:       SMLNUM = DLAMCH( 'S' )
  261:       BIGNUM = ONE / SMLNUM
  262:       CALL DLABAD( SMLNUM, BIGNUM )
  263:       SMLNUM = SQRT( SMLNUM ) / EPS
  264:       BIGNUM = ONE / SMLNUM
  265: *
  266: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  267: *
  268:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
  269:       ILASCL = .FALSE.
  270:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  271:          ANRMTO = SMLNUM
  272:          ILASCL = .TRUE.
  273:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  274:          ANRMTO = BIGNUM
  275:          ILASCL = .TRUE.
  276:       END IF
  277:       IF( ILASCL )
  278:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  279: *
  280: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  281: *
  282:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
  283:       ILBSCL = .FALSE.
  284:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  285:          BNRMTO = SMLNUM
  286:          ILBSCL = .TRUE.
  287:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  288:          BNRMTO = BIGNUM
  289:          ILBSCL = .TRUE.
  290:       END IF
  291:       IF( ILBSCL )
  292:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  293: *
  294: *     Permute the matrices A, B to isolate eigenvalues if possible
  295: *     (Real Workspace: need 6*N)
  296: *
  297:       ILEFT = 1
  298:       IRIGHT = N + 1
  299:       IRWRK = IRIGHT + N
  300:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
  301:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
  302: *
  303: *     Reduce B to triangular form (QR decomposition of B)
  304: *     (Complex Workspace: need N, prefer N*NB)
  305: *
  306:       IROWS = IHI + 1 - ILO
  307:       IF( ILV ) THEN
  308:          ICOLS = N + 1 - ILO
  309:       ELSE
  310:          ICOLS = IROWS
  311:       END IF
  312:       ITAU = 1
  313:       IWRK = ITAU + IROWS
  314:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  315:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
  316: *
  317: *     Apply the orthogonal transformation to matrix A
  318: *     (Complex Workspace: need N, prefer N*NB)
  319: *
  320:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  321:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  322:      $             LWORK+1-IWRK, IERR )
  323: *
  324: *     Initialize VL
  325: *     (Complex Workspace: need N, prefer N*NB)
  326: *
  327:       IF( ILVL ) THEN
  328:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
  329:          IF( IROWS.GT.1 ) THEN
  330:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  331:      $                   VL( ILO+1, ILO ), LDVL )
  332:          END IF
  333:          CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
  334:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  335:       END IF
  336: *
  337: *     Initialize VR
  338: *
  339:       IF( ILVR )
  340:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
  341: *
  342: *     Reduce to generalized Hessenberg form
  343: *
  344:       IF( ILV ) THEN
  345: *
  346: *        Eigenvectors requested -- work on whole matrix.
  347: *
  348:          CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
  349:      $                LDVL, VR, LDVR, IERR )
  350:       ELSE
  351:          CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
  352:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
  353:       END IF
  354: *
  355: *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
  356: *     Schur form and Schur vectors)
  357: *     (Complex Workspace: need N)
  358: *     (Real Workspace: need N)
  359: *
  360:       IWRK = ITAU
  361:       IF( ILV ) THEN
  362:          CHTEMP = 'S'
  363:       ELSE
  364:          CHTEMP = 'E'
  365:       END IF
  366:       CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
  367:      $             ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
  368:      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
  369:       IF( IERR.NE.0 ) THEN
  370:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  371:             INFO = IERR
  372:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  373:             INFO = IERR - N
  374:          ELSE
  375:             INFO = N + 1
  376:          END IF
  377:          GO TO 70
  378:       END IF
  379: *
  380: *     Compute Eigenvectors
  381: *     (Real Workspace: need 2*N)
  382: *     (Complex Workspace: need 2*N)
  383: *
  384:       IF( ILV ) THEN
  385:          IF( ILVL ) THEN
  386:             IF( ILVR ) THEN
  387:                CHTEMP = 'B'
  388:             ELSE
  389:                CHTEMP = 'L'
  390:             END IF
  391:          ELSE
  392:             CHTEMP = 'R'
  393:          END IF
  394: *
  395:          CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
  396:      $                VR, LDVR, N, IN, WORK( IWRK ), RWORK( IRWRK ),
  397:      $                IERR )
  398:          IF( IERR.NE.0 ) THEN
  399:             INFO = N + 2
  400:             GO TO 70
  401:          END IF
  402: *
  403: *        Undo balancing on VL and VR and normalization
  404: *        (Workspace: none needed)
  405: *
  406:          IF( ILVL ) THEN
  407:             CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
  408:      $                   RWORK( IRIGHT ), N, VL, LDVL, IERR )
  409:             DO 30 JC = 1, N
  410:                TEMP = ZERO
  411:                DO 10 JR = 1, N
  412:                   TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
  413:    10          CONTINUE
  414:                IF( TEMP.LT.SMLNUM )
  415:      $            GO TO 30
  416:                TEMP = ONE / TEMP
  417:                DO 20 JR = 1, N
  418:                   VL( JR, JC ) = VL( JR, JC )*TEMP
  419:    20          CONTINUE
  420:    30       CONTINUE
  421:          END IF
  422:          IF( ILVR ) THEN
  423:             CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
  424:      $                   RWORK( IRIGHT ), N, VR, LDVR, IERR )
  425:             DO 60 JC = 1, N
  426:                TEMP = ZERO
  427:                DO 40 JR = 1, N
  428:                   TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
  429:    40          CONTINUE
  430:                IF( TEMP.LT.SMLNUM )
  431:      $            GO TO 60
  432:                TEMP = ONE / TEMP
  433:                DO 50 JR = 1, N
  434:                   VR( JR, JC ) = VR( JR, JC )*TEMP
  435:    50          CONTINUE
  436:    60       CONTINUE
  437:          END IF
  438:       END IF
  439: *
  440: *     Undo scaling if necessary
  441: *
  442:       IF( ILASCL )
  443:      $   CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
  444: *
  445:       IF( ILBSCL )
  446:      $   CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  447: *
  448:    70 CONTINUE
  449:       WORK( 1 ) = LWKOPT
  450: *
  451:       RETURN
  452: *
  453: *     End of ZGGEV
  454: *
  455:       END

CVSweb interface <joel.bertrand@systella.fr>