Annotation of rpl/lapack/lapack/zggev.f, revision 1.18

1.8       bertrand    1: *> \brief <b> ZGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZGGEV + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggev.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggev.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggev.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
                     22: *                         VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
1.15      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBVL, JOBVR
                     26: *       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   RWORK( * )
                     30: *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                     31: *      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
                     32: *      $                   WORK( * )
                     33: *       ..
1.15      bertrand   34: *
1.8       bertrand   35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *> ZGGEV computes for a pair of N-by-N complex nonsymmetric matrices
                     42: *> (A,B), the generalized eigenvalues, and optionally, the left and/or
                     43: *> right generalized eigenvectors.
                     44: *>
                     45: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
                     46: *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
                     47: *> singular. It is usually represented as the pair (alpha,beta), as
                     48: *> there is a reasonable interpretation for beta=0, and even for both
                     49: *> being zero.
                     50: *>
                     51: *> The right generalized eigenvector v(j) corresponding to the
                     52: *> generalized eigenvalue lambda(j) of (A,B) satisfies
                     53: *>
                     54: *>              A * v(j) = lambda(j) * B * v(j).
                     55: *>
                     56: *> The left generalized eigenvector u(j) corresponding to the
                     57: *> generalized eigenvalues lambda(j) of (A,B) satisfies
                     58: *>
                     59: *>              u(j)**H * A = lambda(j) * u(j)**H * B
                     60: *>
                     61: *> where u(j)**H is the conjugate-transpose of u(j).
                     62: *> \endverbatim
                     63: *
                     64: *  Arguments:
                     65: *  ==========
                     66: *
                     67: *> \param[in] JOBVL
                     68: *> \verbatim
                     69: *>          JOBVL is CHARACTER*1
                     70: *>          = 'N':  do not compute the left generalized eigenvectors;
                     71: *>          = 'V':  compute the left generalized eigenvectors.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] JOBVR
                     75: *> \verbatim
                     76: *>          JOBVR is CHARACTER*1
                     77: *>          = 'N':  do not compute the right generalized eigenvectors;
                     78: *>          = 'V':  compute the right generalized eigenvectors.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] N
                     82: *> \verbatim
                     83: *>          N is INTEGER
                     84: *>          The order of the matrices A, B, VL, and VR.  N >= 0.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in,out] A
                     88: *> \verbatim
                     89: *>          A is COMPLEX*16 array, dimension (LDA, N)
                     90: *>          On entry, the matrix A in the pair (A,B).
                     91: *>          On exit, A has been overwritten.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] LDA
                     95: *> \verbatim
                     96: *>          LDA is INTEGER
                     97: *>          The leading dimension of A.  LDA >= max(1,N).
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in,out] B
                    101: *> \verbatim
                    102: *>          B is COMPLEX*16 array, dimension (LDB, N)
                    103: *>          On entry, the matrix B in the pair (A,B).
                    104: *>          On exit, B has been overwritten.
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] LDB
                    108: *> \verbatim
                    109: *>          LDB is INTEGER
                    110: *>          The leading dimension of B.  LDB >= max(1,N).
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[out] ALPHA
                    114: *> \verbatim
                    115: *>          ALPHA is COMPLEX*16 array, dimension (N)
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[out] BETA
                    119: *> \verbatim
                    120: *>          BETA is COMPLEX*16 array, dimension (N)
                    121: *>          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
                    122: *>          generalized eigenvalues.
                    123: *>
                    124: *>          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
                    125: *>          underflow, and BETA(j) may even be zero.  Thus, the user
                    126: *>          should avoid naively computing the ratio alpha/beta.
                    127: *>          However, ALPHA will be always less than and usually
                    128: *>          comparable with norm(A) in magnitude, and BETA always less
                    129: *>          than and usually comparable with norm(B).
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[out] VL
                    133: *> \verbatim
                    134: *>          VL is COMPLEX*16 array, dimension (LDVL,N)
                    135: *>          If JOBVL = 'V', the left generalized eigenvectors u(j) are
                    136: *>          stored one after another in the columns of VL, in the same
                    137: *>          order as their eigenvalues.
                    138: *>          Each eigenvector is scaled so the largest component has
                    139: *>          abs(real part) + abs(imag. part) = 1.
                    140: *>          Not referenced if JOBVL = 'N'.
                    141: *> \endverbatim
                    142: *>
                    143: *> \param[in] LDVL
                    144: *> \verbatim
                    145: *>          LDVL is INTEGER
                    146: *>          The leading dimension of the matrix VL. LDVL >= 1, and
                    147: *>          if JOBVL = 'V', LDVL >= N.
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[out] VR
                    151: *> \verbatim
                    152: *>          VR is COMPLEX*16 array, dimension (LDVR,N)
                    153: *>          If JOBVR = 'V', the right generalized eigenvectors v(j) are
                    154: *>          stored one after another in the columns of VR, in the same
                    155: *>          order as their eigenvalues.
                    156: *>          Each eigenvector is scaled so the largest component has
                    157: *>          abs(real part) + abs(imag. part) = 1.
                    158: *>          Not referenced if JOBVR = 'N'.
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[in] LDVR
                    162: *> \verbatim
                    163: *>          LDVR is INTEGER
                    164: *>          The leading dimension of the matrix VR. LDVR >= 1, and
                    165: *>          if JOBVR = 'V', LDVR >= N.
                    166: *> \endverbatim
                    167: *>
                    168: *> \param[out] WORK
                    169: *> \verbatim
                    170: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    171: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    172: *> \endverbatim
                    173: *>
                    174: *> \param[in] LWORK
                    175: *> \verbatim
                    176: *>          LWORK is INTEGER
                    177: *>          The dimension of the array WORK.  LWORK >= max(1,2*N).
                    178: *>          For good performance, LWORK must generally be larger.
                    179: *>
                    180: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    181: *>          only calculates the optimal size of the WORK array, returns
                    182: *>          this value as the first entry of the WORK array, and no error
                    183: *>          message related to LWORK is issued by XERBLA.
                    184: *> \endverbatim
                    185: *>
                    186: *> \param[out] RWORK
                    187: *> \verbatim
                    188: *>          RWORK is DOUBLE PRECISION array, dimension (8*N)
                    189: *> \endverbatim
                    190: *>
                    191: *> \param[out] INFO
                    192: *> \verbatim
                    193: *>          INFO is INTEGER
                    194: *>          = 0:  successful exit
                    195: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    196: *>          =1,...,N:
                    197: *>                The QZ iteration failed.  No eigenvectors have been
                    198: *>                calculated, but ALPHA(j) and BETA(j) should be
                    199: *>                correct for j=INFO+1,...,N.
1.18    ! bertrand  200: *>          > N:  =N+1: other then QZ iteration failed in ZHGEQZ,
        !           201: *>                =N+2: error return from ZTGEVC.
1.8       bertrand  202: *> \endverbatim
                    203: *
                    204: *  Authors:
                    205: *  ========
                    206: *
1.15      bertrand  207: *> \author Univ. of Tennessee
                    208: *> \author Univ. of California Berkeley
                    209: *> \author Univ. of Colorado Denver
                    210: *> \author NAG Ltd.
1.8       bertrand  211: *
                    212: *> \ingroup complex16GEeigen
                    213: *
                    214: *  =====================================================================
1.1       bertrand  215:       SUBROUTINE ZGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
                    216:      $                  VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
                    217: *
1.18    ! bertrand  218: *  -- LAPACK driver routine --
1.1       bertrand  219: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    220: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    221: *
                    222: *     .. Scalar Arguments ..
                    223:       CHARACTER          JOBVL, JOBVR
                    224:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
                    225: *     ..
                    226: *     .. Array Arguments ..
                    227:       DOUBLE PRECISION   RWORK( * )
                    228:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                    229:      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
                    230:      $                   WORK( * )
                    231: *     ..
                    232: *
                    233: *  =====================================================================
                    234: *
                    235: *     .. Parameters ..
                    236:       DOUBLE PRECISION   ZERO, ONE
                    237:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    238:       COMPLEX*16         CZERO, CONE
                    239:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
                    240:      $                   CONE = ( 1.0D0, 0.0D0 ) )
                    241: *     ..
                    242: *     .. Local Scalars ..
                    243:       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
                    244:       CHARACTER          CHTEMP
                    245:       INTEGER            ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
                    246:      $                   IN, IRIGHT, IROWS, IRWRK, ITAU, IWRK, JC, JR,
                    247:      $                   LWKMIN, LWKOPT
                    248:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
                    249:      $                   SMLNUM, TEMP
                    250:       COMPLEX*16         X
                    251: *     ..
                    252: *     .. Local Arrays ..
                    253:       LOGICAL            LDUMMA( 1 )
                    254: *     ..
                    255: *     .. External Subroutines ..
                    256:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
                    257:      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR,
                    258:      $                   ZUNMQR
                    259: *     ..
                    260: *     .. External Functions ..
                    261:       LOGICAL            LSAME
                    262:       INTEGER            ILAENV
                    263:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    264:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
                    265: *     ..
                    266: *     .. Intrinsic Functions ..
                    267:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
                    268: *     ..
                    269: *     .. Statement Functions ..
                    270:       DOUBLE PRECISION   ABS1
                    271: *     ..
                    272: *     .. Statement Function definitions ..
                    273:       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
                    274: *     ..
                    275: *     .. Executable Statements ..
                    276: *
                    277: *     Decode the input arguments
                    278: *
                    279:       IF( LSAME( JOBVL, 'N' ) ) THEN
                    280:          IJOBVL = 1
                    281:          ILVL = .FALSE.
                    282:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
                    283:          IJOBVL = 2
                    284:          ILVL = .TRUE.
                    285:       ELSE
                    286:          IJOBVL = -1
                    287:          ILVL = .FALSE.
                    288:       END IF
                    289: *
                    290:       IF( LSAME( JOBVR, 'N' ) ) THEN
                    291:          IJOBVR = 1
                    292:          ILVR = .FALSE.
                    293:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
                    294:          IJOBVR = 2
                    295:          ILVR = .TRUE.
                    296:       ELSE
                    297:          IJOBVR = -1
                    298:          ILVR = .FALSE.
                    299:       END IF
                    300:       ILV = ILVL .OR. ILVR
                    301: *
                    302: *     Test the input arguments
                    303: *
                    304:       INFO = 0
                    305:       LQUERY = ( LWORK.EQ.-1 )
                    306:       IF( IJOBVL.LE.0 ) THEN
                    307:          INFO = -1
                    308:       ELSE IF( IJOBVR.LE.0 ) THEN
                    309:          INFO = -2
                    310:       ELSE IF( N.LT.0 ) THEN
                    311:          INFO = -3
                    312:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    313:          INFO = -5
                    314:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    315:          INFO = -7
                    316:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
                    317:          INFO = -11
                    318:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
                    319:          INFO = -13
                    320:       END IF
                    321: *
                    322: *     Compute workspace
                    323: *      (Note: Comments in the code beginning "Workspace:" describe the
                    324: *       minimal amount of workspace needed at that point in the code,
                    325: *       as well as the preferred amount for good performance.
                    326: *       NB refers to the optimal block size for the immediately
                    327: *       following subroutine, as returned by ILAENV. The workspace is
                    328: *       computed assuming ILO = 1 and IHI = N, the worst case.)
                    329: *
                    330:       IF( INFO.EQ.0 ) THEN
                    331:          LWKMIN = MAX( 1, 2*N )
                    332:          LWKOPT = MAX( 1, N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
                    333:          LWKOPT = MAX( LWKOPT, N +
                    334:      $                 N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, 0 ) )
                    335:          IF( ILVL ) THEN
                    336:             LWKOPT = MAX( LWKOPT, N +
                    337:      $                    N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) )
                    338:          END IF
                    339:          WORK( 1 ) = LWKOPT
                    340: *
                    341:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
                    342:      $      INFO = -15
                    343:       END IF
                    344: *
                    345:       IF( INFO.NE.0 ) THEN
                    346:          CALL XERBLA( 'ZGGEV ', -INFO )
                    347:          RETURN
                    348:       ELSE IF( LQUERY ) THEN
                    349:          RETURN
                    350:       END IF
                    351: *
                    352: *     Quick return if possible
                    353: *
                    354:       IF( N.EQ.0 )
                    355:      $   RETURN
                    356: *
                    357: *     Get machine constants
                    358: *
                    359:       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
                    360:       SMLNUM = DLAMCH( 'S' )
                    361:       BIGNUM = ONE / SMLNUM
                    362:       CALL DLABAD( SMLNUM, BIGNUM )
                    363:       SMLNUM = SQRT( SMLNUM ) / EPS
                    364:       BIGNUM = ONE / SMLNUM
                    365: *
                    366: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    367: *
                    368:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
                    369:       ILASCL = .FALSE.
                    370:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    371:          ANRMTO = SMLNUM
                    372:          ILASCL = .TRUE.
                    373:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    374:          ANRMTO = BIGNUM
                    375:          ILASCL = .TRUE.
                    376:       END IF
                    377:       IF( ILASCL )
                    378:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
                    379: *
                    380: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    381: *
                    382:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
                    383:       ILBSCL = .FALSE.
                    384:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    385:          BNRMTO = SMLNUM
                    386:          ILBSCL = .TRUE.
                    387:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    388:          BNRMTO = BIGNUM
                    389:          ILBSCL = .TRUE.
                    390:       END IF
                    391:       IF( ILBSCL )
                    392:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
                    393: *
                    394: *     Permute the matrices A, B to isolate eigenvalues if possible
                    395: *     (Real Workspace: need 6*N)
                    396: *
                    397:       ILEFT = 1
                    398:       IRIGHT = N + 1
                    399:       IRWRK = IRIGHT + N
                    400:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
                    401:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
                    402: *
                    403: *     Reduce B to triangular form (QR decomposition of B)
                    404: *     (Complex Workspace: need N, prefer N*NB)
                    405: *
                    406:       IROWS = IHI + 1 - ILO
                    407:       IF( ILV ) THEN
                    408:          ICOLS = N + 1 - ILO
                    409:       ELSE
                    410:          ICOLS = IROWS
                    411:       END IF
                    412:       ITAU = 1
                    413:       IWRK = ITAU + IROWS
                    414:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    415:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    416: *
                    417: *     Apply the orthogonal transformation to matrix A
                    418: *     (Complex Workspace: need N, prefer N*NB)
                    419: *
                    420:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    421:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
                    422:      $             LWORK+1-IWRK, IERR )
                    423: *
                    424: *     Initialize VL
                    425: *     (Complex Workspace: need N, prefer N*NB)
                    426: *
                    427:       IF( ILVL ) THEN
                    428:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
                    429:          IF( IROWS.GT.1 ) THEN
                    430:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    431:      $                   VL( ILO+1, ILO ), LDVL )
                    432:          END IF
                    433:          CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
                    434:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
                    435:       END IF
                    436: *
                    437: *     Initialize VR
                    438: *
                    439:       IF( ILVR )
                    440:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
                    441: *
                    442: *     Reduce to generalized Hessenberg form
                    443: *
                    444:       IF( ILV ) THEN
                    445: *
                    446: *        Eigenvectors requested -- work on whole matrix.
                    447: *
                    448:          CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
                    449:      $                LDVL, VR, LDVR, IERR )
                    450:       ELSE
                    451:          CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
                    452:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
                    453:       END IF
                    454: *
                    455: *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
                    456: *     Schur form and Schur vectors)
                    457: *     (Complex Workspace: need N)
                    458: *     (Real Workspace: need N)
                    459: *
                    460:       IWRK = ITAU
                    461:       IF( ILV ) THEN
                    462:          CHTEMP = 'S'
                    463:       ELSE
                    464:          CHTEMP = 'E'
                    465:       END IF
                    466:       CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
                    467:      $             ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
                    468:      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
                    469:       IF( IERR.NE.0 ) THEN
                    470:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
                    471:             INFO = IERR
                    472:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
                    473:             INFO = IERR - N
                    474:          ELSE
                    475:             INFO = N + 1
                    476:          END IF
                    477:          GO TO 70
                    478:       END IF
                    479: *
                    480: *     Compute Eigenvectors
                    481: *     (Real Workspace: need 2*N)
                    482: *     (Complex Workspace: need 2*N)
                    483: *
                    484:       IF( ILV ) THEN
                    485:          IF( ILVL ) THEN
                    486:             IF( ILVR ) THEN
                    487:                CHTEMP = 'B'
                    488:             ELSE
                    489:                CHTEMP = 'L'
                    490:             END IF
                    491:          ELSE
                    492:             CHTEMP = 'R'
                    493:          END IF
                    494: *
                    495:          CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
                    496:      $                VR, LDVR, N, IN, WORK( IWRK ), RWORK( IRWRK ),
                    497:      $                IERR )
                    498:          IF( IERR.NE.0 ) THEN
                    499:             INFO = N + 2
                    500:             GO TO 70
                    501:          END IF
                    502: *
                    503: *        Undo balancing on VL and VR and normalization
                    504: *        (Workspace: none needed)
                    505: *
                    506:          IF( ILVL ) THEN
                    507:             CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
                    508:      $                   RWORK( IRIGHT ), N, VL, LDVL, IERR )
                    509:             DO 30 JC = 1, N
                    510:                TEMP = ZERO
                    511:                DO 10 JR = 1, N
                    512:                   TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
                    513:    10          CONTINUE
                    514:                IF( TEMP.LT.SMLNUM )
                    515:      $            GO TO 30
                    516:                TEMP = ONE / TEMP
                    517:                DO 20 JR = 1, N
                    518:                   VL( JR, JC ) = VL( JR, JC )*TEMP
                    519:    20          CONTINUE
                    520:    30       CONTINUE
                    521:          END IF
                    522:          IF( ILVR ) THEN
                    523:             CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
                    524:      $                   RWORK( IRIGHT ), N, VR, LDVR, IERR )
                    525:             DO 60 JC = 1, N
                    526:                TEMP = ZERO
                    527:                DO 40 JR = 1, N
                    528:                   TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
                    529:    40          CONTINUE
                    530:                IF( TEMP.LT.SMLNUM )
                    531:      $            GO TO 60
                    532:                TEMP = ONE / TEMP
                    533:                DO 50 JR = 1, N
                    534:                   VR( JR, JC ) = VR( JR, JC )*TEMP
                    535:    50          CONTINUE
                    536:    60       CONTINUE
                    537:          END IF
                    538:       END IF
                    539: *
                    540: *     Undo scaling if necessary
                    541: *
1.10      bertrand  542:    70 CONTINUE
                    543: *
1.1       bertrand  544:       IF( ILASCL )
                    545:      $   CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
                    546: *
                    547:       IF( ILBSCL )
                    548:      $   CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    549: *
                    550:       WORK( 1 ) = LWKOPT
                    551:       RETURN
                    552: *
                    553: *     End of ZGGEV
                    554: *
                    555:       END

CVSweb interface <joel.bertrand@systella.fr>