Annotation of rpl/lapack/lapack/zggev.f, revision 1.1.1.1

1.1       bertrand    1:       SUBROUTINE ZGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
                      2:      $                  VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          JOBVL, JOBVR
                     11:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       DOUBLE PRECISION   RWORK( * )
                     15:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                     16:      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
                     17:      $                   WORK( * )
                     18: *     ..
                     19: *
                     20: *  Purpose
                     21: *  =======
                     22: *
                     23: *  ZGGEV computes for a pair of N-by-N complex nonsymmetric matrices
                     24: *  (A,B), the generalized eigenvalues, and optionally, the left and/or
                     25: *  right generalized eigenvectors.
                     26: *
                     27: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar
                     28: *  lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
                     29: *  singular. It is usually represented as the pair (alpha,beta), as
                     30: *  there is a reasonable interpretation for beta=0, and even for both
                     31: *  being zero.
                     32: *
                     33: *  The right generalized eigenvector v(j) corresponding to the
                     34: *  generalized eigenvalue lambda(j) of (A,B) satisfies
                     35: *
                     36: *               A * v(j) = lambda(j) * B * v(j).
                     37: *
                     38: *  The left generalized eigenvector u(j) corresponding to the
                     39: *  generalized eigenvalues lambda(j) of (A,B) satisfies
                     40: *
                     41: *               u(j)**H * A = lambda(j) * u(j)**H * B
                     42: *
                     43: *  where u(j)**H is the conjugate-transpose of u(j).
                     44: *
                     45: *  Arguments
                     46: *  =========
                     47: *
                     48: *  JOBVL   (input) CHARACTER*1
                     49: *          = 'N':  do not compute the left generalized eigenvectors;
                     50: *          = 'V':  compute the left generalized eigenvectors.
                     51: *
                     52: *  JOBVR   (input) CHARACTER*1
                     53: *          = 'N':  do not compute the right generalized eigenvectors;
                     54: *          = 'V':  compute the right generalized eigenvectors.
                     55: *
                     56: *  N       (input) INTEGER
                     57: *          The order of the matrices A, B, VL, and VR.  N >= 0.
                     58: *
                     59: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
                     60: *          On entry, the matrix A in the pair (A,B).
                     61: *          On exit, A has been overwritten.
                     62: *
                     63: *  LDA     (input) INTEGER
                     64: *          The leading dimension of A.  LDA >= max(1,N).
                     65: *
                     66: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
                     67: *          On entry, the matrix B in the pair (A,B).
                     68: *          On exit, B has been overwritten.
                     69: *
                     70: *  LDB     (input) INTEGER
                     71: *          The leading dimension of B.  LDB >= max(1,N).
                     72: *
                     73: *  ALPHA   (output) COMPLEX*16 array, dimension (N)
                     74: *  BETA    (output) COMPLEX*16 array, dimension (N)
                     75: *          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
                     76: *          generalized eigenvalues.
                     77: *
                     78: *          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
                     79: *          underflow, and BETA(j) may even be zero.  Thus, the user
                     80: *          should avoid naively computing the ratio alpha/beta.
                     81: *          However, ALPHA will be always less than and usually
                     82: *          comparable with norm(A) in magnitude, and BETA always less
                     83: *          than and usually comparable with norm(B).
                     84: *
                     85: *  VL      (output) COMPLEX*16 array, dimension (LDVL,N)
                     86: *          If JOBVL = 'V', the left generalized eigenvectors u(j) are
                     87: *          stored one after another in the columns of VL, in the same
                     88: *          order as their eigenvalues.
                     89: *          Each eigenvector is scaled so the largest component has
                     90: *          abs(real part) + abs(imag. part) = 1.
                     91: *          Not referenced if JOBVL = 'N'.
                     92: *
                     93: *  LDVL    (input) INTEGER
                     94: *          The leading dimension of the matrix VL. LDVL >= 1, and
                     95: *          if JOBVL = 'V', LDVL >= N.
                     96: *
                     97: *  VR      (output) COMPLEX*16 array, dimension (LDVR,N)
                     98: *          If JOBVR = 'V', the right generalized eigenvectors v(j) are
                     99: *          stored one after another in the columns of VR, in the same
                    100: *          order as their eigenvalues.
                    101: *          Each eigenvector is scaled so the largest component has
                    102: *          abs(real part) + abs(imag. part) = 1.
                    103: *          Not referenced if JOBVR = 'N'.
                    104: *
                    105: *  LDVR    (input) INTEGER
                    106: *          The leading dimension of the matrix VR. LDVR >= 1, and
                    107: *          if JOBVR = 'V', LDVR >= N.
                    108: *
                    109: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                    110: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    111: *
                    112: *  LWORK   (input) INTEGER
                    113: *          The dimension of the array WORK.  LWORK >= max(1,2*N).
                    114: *          For good performance, LWORK must generally be larger.
                    115: *
                    116: *          If LWORK = -1, then a workspace query is assumed; the routine
                    117: *          only calculates the optimal size of the WORK array, returns
                    118: *          this value as the first entry of the WORK array, and no error
                    119: *          message related to LWORK is issued by XERBLA.
                    120: *
                    121: *  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (8*N)
                    122: *
                    123: *  INFO    (output) INTEGER
                    124: *          = 0:  successful exit
                    125: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    126: *          =1,...,N:
                    127: *                The QZ iteration failed.  No eigenvectors have been
                    128: *                calculated, but ALPHA(j) and BETA(j) should be
                    129: *                correct for j=INFO+1,...,N.
                    130: *          > N:  =N+1: other then QZ iteration failed in DHGEQZ,
                    131: *                =N+2: error return from DTGEVC.
                    132: *
                    133: *  =====================================================================
                    134: *
                    135: *     .. Parameters ..
                    136:       DOUBLE PRECISION   ZERO, ONE
                    137:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    138:       COMPLEX*16         CZERO, CONE
                    139:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
                    140:      $                   CONE = ( 1.0D0, 0.0D0 ) )
                    141: *     ..
                    142: *     .. Local Scalars ..
                    143:       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
                    144:       CHARACTER          CHTEMP
                    145:       INTEGER            ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
                    146:      $                   IN, IRIGHT, IROWS, IRWRK, ITAU, IWRK, JC, JR,
                    147:      $                   LWKMIN, LWKOPT
                    148:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
                    149:      $                   SMLNUM, TEMP
                    150:       COMPLEX*16         X
                    151: *     ..
                    152: *     .. Local Arrays ..
                    153:       LOGICAL            LDUMMA( 1 )
                    154: *     ..
                    155: *     .. External Subroutines ..
                    156:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
                    157:      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR,
                    158:      $                   ZUNMQR
                    159: *     ..
                    160: *     .. External Functions ..
                    161:       LOGICAL            LSAME
                    162:       INTEGER            ILAENV
                    163:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    164:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
                    165: *     ..
                    166: *     .. Intrinsic Functions ..
                    167:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
                    168: *     ..
                    169: *     .. Statement Functions ..
                    170:       DOUBLE PRECISION   ABS1
                    171: *     ..
                    172: *     .. Statement Function definitions ..
                    173:       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
                    174: *     ..
                    175: *     .. Executable Statements ..
                    176: *
                    177: *     Decode the input arguments
                    178: *
                    179:       IF( LSAME( JOBVL, 'N' ) ) THEN
                    180:          IJOBVL = 1
                    181:          ILVL = .FALSE.
                    182:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
                    183:          IJOBVL = 2
                    184:          ILVL = .TRUE.
                    185:       ELSE
                    186:          IJOBVL = -1
                    187:          ILVL = .FALSE.
                    188:       END IF
                    189: *
                    190:       IF( LSAME( JOBVR, 'N' ) ) THEN
                    191:          IJOBVR = 1
                    192:          ILVR = .FALSE.
                    193:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
                    194:          IJOBVR = 2
                    195:          ILVR = .TRUE.
                    196:       ELSE
                    197:          IJOBVR = -1
                    198:          ILVR = .FALSE.
                    199:       END IF
                    200:       ILV = ILVL .OR. ILVR
                    201: *
                    202: *     Test the input arguments
                    203: *
                    204:       INFO = 0
                    205:       LQUERY = ( LWORK.EQ.-1 )
                    206:       IF( IJOBVL.LE.0 ) THEN
                    207:          INFO = -1
                    208:       ELSE IF( IJOBVR.LE.0 ) THEN
                    209:          INFO = -2
                    210:       ELSE IF( N.LT.0 ) THEN
                    211:          INFO = -3
                    212:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    213:          INFO = -5
                    214:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    215:          INFO = -7
                    216:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
                    217:          INFO = -11
                    218:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
                    219:          INFO = -13
                    220:       END IF
                    221: *
                    222: *     Compute workspace
                    223: *      (Note: Comments in the code beginning "Workspace:" describe the
                    224: *       minimal amount of workspace needed at that point in the code,
                    225: *       as well as the preferred amount for good performance.
                    226: *       NB refers to the optimal block size for the immediately
                    227: *       following subroutine, as returned by ILAENV. The workspace is
                    228: *       computed assuming ILO = 1 and IHI = N, the worst case.)
                    229: *
                    230:       IF( INFO.EQ.0 ) THEN
                    231:          LWKMIN = MAX( 1, 2*N )
                    232:          LWKOPT = MAX( 1, N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
                    233:          LWKOPT = MAX( LWKOPT, N +
                    234:      $                 N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, 0 ) )
                    235:          IF( ILVL ) THEN
                    236:             LWKOPT = MAX( LWKOPT, N +
                    237:      $                    N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) )
                    238:          END IF
                    239:          WORK( 1 ) = LWKOPT
                    240: *
                    241:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
                    242:      $      INFO = -15
                    243:       END IF
                    244: *
                    245:       IF( INFO.NE.0 ) THEN
                    246:          CALL XERBLA( 'ZGGEV ', -INFO )
                    247:          RETURN
                    248:       ELSE IF( LQUERY ) THEN
                    249:          RETURN
                    250:       END IF
                    251: *
                    252: *     Quick return if possible
                    253: *
                    254:       IF( N.EQ.0 )
                    255:      $   RETURN
                    256: *
                    257: *     Get machine constants
                    258: *
                    259:       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
                    260:       SMLNUM = DLAMCH( 'S' )
                    261:       BIGNUM = ONE / SMLNUM
                    262:       CALL DLABAD( SMLNUM, BIGNUM )
                    263:       SMLNUM = SQRT( SMLNUM ) / EPS
                    264:       BIGNUM = ONE / SMLNUM
                    265: *
                    266: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    267: *
                    268:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
                    269:       ILASCL = .FALSE.
                    270:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    271:          ANRMTO = SMLNUM
                    272:          ILASCL = .TRUE.
                    273:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    274:          ANRMTO = BIGNUM
                    275:          ILASCL = .TRUE.
                    276:       END IF
                    277:       IF( ILASCL )
                    278:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
                    279: *
                    280: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    281: *
                    282:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
                    283:       ILBSCL = .FALSE.
                    284:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    285:          BNRMTO = SMLNUM
                    286:          ILBSCL = .TRUE.
                    287:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    288:          BNRMTO = BIGNUM
                    289:          ILBSCL = .TRUE.
                    290:       END IF
                    291:       IF( ILBSCL )
                    292:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
                    293: *
                    294: *     Permute the matrices A, B to isolate eigenvalues if possible
                    295: *     (Real Workspace: need 6*N)
                    296: *
                    297:       ILEFT = 1
                    298:       IRIGHT = N + 1
                    299:       IRWRK = IRIGHT + N
                    300:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
                    301:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
                    302: *
                    303: *     Reduce B to triangular form (QR decomposition of B)
                    304: *     (Complex Workspace: need N, prefer N*NB)
                    305: *
                    306:       IROWS = IHI + 1 - ILO
                    307:       IF( ILV ) THEN
                    308:          ICOLS = N + 1 - ILO
                    309:       ELSE
                    310:          ICOLS = IROWS
                    311:       END IF
                    312:       ITAU = 1
                    313:       IWRK = ITAU + IROWS
                    314:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    315:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    316: *
                    317: *     Apply the orthogonal transformation to matrix A
                    318: *     (Complex Workspace: need N, prefer N*NB)
                    319: *
                    320:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    321:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
                    322:      $             LWORK+1-IWRK, IERR )
                    323: *
                    324: *     Initialize VL
                    325: *     (Complex Workspace: need N, prefer N*NB)
                    326: *
                    327:       IF( ILVL ) THEN
                    328:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
                    329:          IF( IROWS.GT.1 ) THEN
                    330:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    331:      $                   VL( ILO+1, ILO ), LDVL )
                    332:          END IF
                    333:          CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
                    334:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
                    335:       END IF
                    336: *
                    337: *     Initialize VR
                    338: *
                    339:       IF( ILVR )
                    340:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
                    341: *
                    342: *     Reduce to generalized Hessenberg form
                    343: *
                    344:       IF( ILV ) THEN
                    345: *
                    346: *        Eigenvectors requested -- work on whole matrix.
                    347: *
                    348:          CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
                    349:      $                LDVL, VR, LDVR, IERR )
                    350:       ELSE
                    351:          CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
                    352:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
                    353:       END IF
                    354: *
                    355: *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
                    356: *     Schur form and Schur vectors)
                    357: *     (Complex Workspace: need N)
                    358: *     (Real Workspace: need N)
                    359: *
                    360:       IWRK = ITAU
                    361:       IF( ILV ) THEN
                    362:          CHTEMP = 'S'
                    363:       ELSE
                    364:          CHTEMP = 'E'
                    365:       END IF
                    366:       CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
                    367:      $             ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
                    368:      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
                    369:       IF( IERR.NE.0 ) THEN
                    370:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
                    371:             INFO = IERR
                    372:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
                    373:             INFO = IERR - N
                    374:          ELSE
                    375:             INFO = N + 1
                    376:          END IF
                    377:          GO TO 70
                    378:       END IF
                    379: *
                    380: *     Compute Eigenvectors
                    381: *     (Real Workspace: need 2*N)
                    382: *     (Complex Workspace: need 2*N)
                    383: *
                    384:       IF( ILV ) THEN
                    385:          IF( ILVL ) THEN
                    386:             IF( ILVR ) THEN
                    387:                CHTEMP = 'B'
                    388:             ELSE
                    389:                CHTEMP = 'L'
                    390:             END IF
                    391:          ELSE
                    392:             CHTEMP = 'R'
                    393:          END IF
                    394: *
                    395:          CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
                    396:      $                VR, LDVR, N, IN, WORK( IWRK ), RWORK( IRWRK ),
                    397:      $                IERR )
                    398:          IF( IERR.NE.0 ) THEN
                    399:             INFO = N + 2
                    400:             GO TO 70
                    401:          END IF
                    402: *
                    403: *        Undo balancing on VL and VR and normalization
                    404: *        (Workspace: none needed)
                    405: *
                    406:          IF( ILVL ) THEN
                    407:             CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
                    408:      $                   RWORK( IRIGHT ), N, VL, LDVL, IERR )
                    409:             DO 30 JC = 1, N
                    410:                TEMP = ZERO
                    411:                DO 10 JR = 1, N
                    412:                   TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
                    413:    10          CONTINUE
                    414:                IF( TEMP.LT.SMLNUM )
                    415:      $            GO TO 30
                    416:                TEMP = ONE / TEMP
                    417:                DO 20 JR = 1, N
                    418:                   VL( JR, JC ) = VL( JR, JC )*TEMP
                    419:    20          CONTINUE
                    420:    30       CONTINUE
                    421:          END IF
                    422:          IF( ILVR ) THEN
                    423:             CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
                    424:      $                   RWORK( IRIGHT ), N, VR, LDVR, IERR )
                    425:             DO 60 JC = 1, N
                    426:                TEMP = ZERO
                    427:                DO 40 JR = 1, N
                    428:                   TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
                    429:    40          CONTINUE
                    430:                IF( TEMP.LT.SMLNUM )
                    431:      $            GO TO 60
                    432:                TEMP = ONE / TEMP
                    433:                DO 50 JR = 1, N
                    434:                   VR( JR, JC ) = VR( JR, JC )*TEMP
                    435:    50          CONTINUE
                    436:    60       CONTINUE
                    437:          END IF
                    438:       END IF
                    439: *
                    440: *     Undo scaling if necessary
                    441: *
                    442:       IF( ILASCL )
                    443:      $   CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
                    444: *
                    445:       IF( ILBSCL )
                    446:      $   CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    447: *
                    448:    70 CONTINUE
                    449:       WORK( 1 ) = LWKOPT
                    450: *
                    451:       RETURN
                    452: *
                    453: *     End of ZGGEV
                    454: *
                    455:       END

CVSweb interface <joel.bertrand@systella.fr>