Annotation of rpl/lapack/lapack/zggev.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
        !             2:      $                  VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          JOBVL, JOBVR
        !            11:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       DOUBLE PRECISION   RWORK( * )
        !            15:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
        !            16:      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
        !            17:      $                   WORK( * )
        !            18: *     ..
        !            19: *
        !            20: *  Purpose
        !            21: *  =======
        !            22: *
        !            23: *  ZGGEV computes for a pair of N-by-N complex nonsymmetric matrices
        !            24: *  (A,B), the generalized eigenvalues, and optionally, the left and/or
        !            25: *  right generalized eigenvectors.
        !            26: *
        !            27: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar
        !            28: *  lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
        !            29: *  singular. It is usually represented as the pair (alpha,beta), as
        !            30: *  there is a reasonable interpretation for beta=0, and even for both
        !            31: *  being zero.
        !            32: *
        !            33: *  The right generalized eigenvector v(j) corresponding to the
        !            34: *  generalized eigenvalue lambda(j) of (A,B) satisfies
        !            35: *
        !            36: *               A * v(j) = lambda(j) * B * v(j).
        !            37: *
        !            38: *  The left generalized eigenvector u(j) corresponding to the
        !            39: *  generalized eigenvalues lambda(j) of (A,B) satisfies
        !            40: *
        !            41: *               u(j)**H * A = lambda(j) * u(j)**H * B
        !            42: *
        !            43: *  where u(j)**H is the conjugate-transpose of u(j).
        !            44: *
        !            45: *  Arguments
        !            46: *  =========
        !            47: *
        !            48: *  JOBVL   (input) CHARACTER*1
        !            49: *          = 'N':  do not compute the left generalized eigenvectors;
        !            50: *          = 'V':  compute the left generalized eigenvectors.
        !            51: *
        !            52: *  JOBVR   (input) CHARACTER*1
        !            53: *          = 'N':  do not compute the right generalized eigenvectors;
        !            54: *          = 'V':  compute the right generalized eigenvectors.
        !            55: *
        !            56: *  N       (input) INTEGER
        !            57: *          The order of the matrices A, B, VL, and VR.  N >= 0.
        !            58: *
        !            59: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
        !            60: *          On entry, the matrix A in the pair (A,B).
        !            61: *          On exit, A has been overwritten.
        !            62: *
        !            63: *  LDA     (input) INTEGER
        !            64: *          The leading dimension of A.  LDA >= max(1,N).
        !            65: *
        !            66: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
        !            67: *          On entry, the matrix B in the pair (A,B).
        !            68: *          On exit, B has been overwritten.
        !            69: *
        !            70: *  LDB     (input) INTEGER
        !            71: *          The leading dimension of B.  LDB >= max(1,N).
        !            72: *
        !            73: *  ALPHA   (output) COMPLEX*16 array, dimension (N)
        !            74: *  BETA    (output) COMPLEX*16 array, dimension (N)
        !            75: *          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
        !            76: *          generalized eigenvalues.
        !            77: *
        !            78: *          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
        !            79: *          underflow, and BETA(j) may even be zero.  Thus, the user
        !            80: *          should avoid naively computing the ratio alpha/beta.
        !            81: *          However, ALPHA will be always less than and usually
        !            82: *          comparable with norm(A) in magnitude, and BETA always less
        !            83: *          than and usually comparable with norm(B).
        !            84: *
        !            85: *  VL      (output) COMPLEX*16 array, dimension (LDVL,N)
        !            86: *          If JOBVL = 'V', the left generalized eigenvectors u(j) are
        !            87: *          stored one after another in the columns of VL, in the same
        !            88: *          order as their eigenvalues.
        !            89: *          Each eigenvector is scaled so the largest component has
        !            90: *          abs(real part) + abs(imag. part) = 1.
        !            91: *          Not referenced if JOBVL = 'N'.
        !            92: *
        !            93: *  LDVL    (input) INTEGER
        !            94: *          The leading dimension of the matrix VL. LDVL >= 1, and
        !            95: *          if JOBVL = 'V', LDVL >= N.
        !            96: *
        !            97: *  VR      (output) COMPLEX*16 array, dimension (LDVR,N)
        !            98: *          If JOBVR = 'V', the right generalized eigenvectors v(j) are
        !            99: *          stored one after another in the columns of VR, in the same
        !           100: *          order as their eigenvalues.
        !           101: *          Each eigenvector is scaled so the largest component has
        !           102: *          abs(real part) + abs(imag. part) = 1.
        !           103: *          Not referenced if JOBVR = 'N'.
        !           104: *
        !           105: *  LDVR    (input) INTEGER
        !           106: *          The leading dimension of the matrix VR. LDVR >= 1, and
        !           107: *          if JOBVR = 'V', LDVR >= N.
        !           108: *
        !           109: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           110: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           111: *
        !           112: *  LWORK   (input) INTEGER
        !           113: *          The dimension of the array WORK.  LWORK >= max(1,2*N).
        !           114: *          For good performance, LWORK must generally be larger.
        !           115: *
        !           116: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           117: *          only calculates the optimal size of the WORK array, returns
        !           118: *          this value as the first entry of the WORK array, and no error
        !           119: *          message related to LWORK is issued by XERBLA.
        !           120: *
        !           121: *  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (8*N)
        !           122: *
        !           123: *  INFO    (output) INTEGER
        !           124: *          = 0:  successful exit
        !           125: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           126: *          =1,...,N:
        !           127: *                The QZ iteration failed.  No eigenvectors have been
        !           128: *                calculated, but ALPHA(j) and BETA(j) should be
        !           129: *                correct for j=INFO+1,...,N.
        !           130: *          > N:  =N+1: other then QZ iteration failed in DHGEQZ,
        !           131: *                =N+2: error return from DTGEVC.
        !           132: *
        !           133: *  =====================================================================
        !           134: *
        !           135: *     .. Parameters ..
        !           136:       DOUBLE PRECISION   ZERO, ONE
        !           137:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           138:       COMPLEX*16         CZERO, CONE
        !           139:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
        !           140:      $                   CONE = ( 1.0D0, 0.0D0 ) )
        !           141: *     ..
        !           142: *     .. Local Scalars ..
        !           143:       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
        !           144:       CHARACTER          CHTEMP
        !           145:       INTEGER            ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
        !           146:      $                   IN, IRIGHT, IROWS, IRWRK, ITAU, IWRK, JC, JR,
        !           147:      $                   LWKMIN, LWKOPT
        !           148:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
        !           149:      $                   SMLNUM, TEMP
        !           150:       COMPLEX*16         X
        !           151: *     ..
        !           152: *     .. Local Arrays ..
        !           153:       LOGICAL            LDUMMA( 1 )
        !           154: *     ..
        !           155: *     .. External Subroutines ..
        !           156:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
        !           157:      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR,
        !           158:      $                   ZUNMQR
        !           159: *     ..
        !           160: *     .. External Functions ..
        !           161:       LOGICAL            LSAME
        !           162:       INTEGER            ILAENV
        !           163:       DOUBLE PRECISION   DLAMCH, ZLANGE
        !           164:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
        !           165: *     ..
        !           166: *     .. Intrinsic Functions ..
        !           167:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
        !           168: *     ..
        !           169: *     .. Statement Functions ..
        !           170:       DOUBLE PRECISION   ABS1
        !           171: *     ..
        !           172: *     .. Statement Function definitions ..
        !           173:       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
        !           174: *     ..
        !           175: *     .. Executable Statements ..
        !           176: *
        !           177: *     Decode the input arguments
        !           178: *
        !           179:       IF( LSAME( JOBVL, 'N' ) ) THEN
        !           180:          IJOBVL = 1
        !           181:          ILVL = .FALSE.
        !           182:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
        !           183:          IJOBVL = 2
        !           184:          ILVL = .TRUE.
        !           185:       ELSE
        !           186:          IJOBVL = -1
        !           187:          ILVL = .FALSE.
        !           188:       END IF
        !           189: *
        !           190:       IF( LSAME( JOBVR, 'N' ) ) THEN
        !           191:          IJOBVR = 1
        !           192:          ILVR = .FALSE.
        !           193:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
        !           194:          IJOBVR = 2
        !           195:          ILVR = .TRUE.
        !           196:       ELSE
        !           197:          IJOBVR = -1
        !           198:          ILVR = .FALSE.
        !           199:       END IF
        !           200:       ILV = ILVL .OR. ILVR
        !           201: *
        !           202: *     Test the input arguments
        !           203: *
        !           204:       INFO = 0
        !           205:       LQUERY = ( LWORK.EQ.-1 )
        !           206:       IF( IJOBVL.LE.0 ) THEN
        !           207:          INFO = -1
        !           208:       ELSE IF( IJOBVR.LE.0 ) THEN
        !           209:          INFO = -2
        !           210:       ELSE IF( N.LT.0 ) THEN
        !           211:          INFO = -3
        !           212:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           213:          INFO = -5
        !           214:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           215:          INFO = -7
        !           216:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
        !           217:          INFO = -11
        !           218:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
        !           219:          INFO = -13
        !           220:       END IF
        !           221: *
        !           222: *     Compute workspace
        !           223: *      (Note: Comments in the code beginning "Workspace:" describe the
        !           224: *       minimal amount of workspace needed at that point in the code,
        !           225: *       as well as the preferred amount for good performance.
        !           226: *       NB refers to the optimal block size for the immediately
        !           227: *       following subroutine, as returned by ILAENV. The workspace is
        !           228: *       computed assuming ILO = 1 and IHI = N, the worst case.)
        !           229: *
        !           230:       IF( INFO.EQ.0 ) THEN
        !           231:          LWKMIN = MAX( 1, 2*N )
        !           232:          LWKOPT = MAX( 1, N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
        !           233:          LWKOPT = MAX( LWKOPT, N +
        !           234:      $                 N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, 0 ) )
        !           235:          IF( ILVL ) THEN
        !           236:             LWKOPT = MAX( LWKOPT, N +
        !           237:      $                    N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) )
        !           238:          END IF
        !           239:          WORK( 1 ) = LWKOPT
        !           240: *
        !           241:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
        !           242:      $      INFO = -15
        !           243:       END IF
        !           244: *
        !           245:       IF( INFO.NE.0 ) THEN
        !           246:          CALL XERBLA( 'ZGGEV ', -INFO )
        !           247:          RETURN
        !           248:       ELSE IF( LQUERY ) THEN
        !           249:          RETURN
        !           250:       END IF
        !           251: *
        !           252: *     Quick return if possible
        !           253: *
        !           254:       IF( N.EQ.0 )
        !           255:      $   RETURN
        !           256: *
        !           257: *     Get machine constants
        !           258: *
        !           259:       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
        !           260:       SMLNUM = DLAMCH( 'S' )
        !           261:       BIGNUM = ONE / SMLNUM
        !           262:       CALL DLABAD( SMLNUM, BIGNUM )
        !           263:       SMLNUM = SQRT( SMLNUM ) / EPS
        !           264:       BIGNUM = ONE / SMLNUM
        !           265: *
        !           266: *     Scale A if max element outside range [SMLNUM,BIGNUM]
        !           267: *
        !           268:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
        !           269:       ILASCL = .FALSE.
        !           270:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           271:          ANRMTO = SMLNUM
        !           272:          ILASCL = .TRUE.
        !           273:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           274:          ANRMTO = BIGNUM
        !           275:          ILASCL = .TRUE.
        !           276:       END IF
        !           277:       IF( ILASCL )
        !           278:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
        !           279: *
        !           280: *     Scale B if max element outside range [SMLNUM,BIGNUM]
        !           281: *
        !           282:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
        !           283:       ILBSCL = .FALSE.
        !           284:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
        !           285:          BNRMTO = SMLNUM
        !           286:          ILBSCL = .TRUE.
        !           287:       ELSE IF( BNRM.GT.BIGNUM ) THEN
        !           288:          BNRMTO = BIGNUM
        !           289:          ILBSCL = .TRUE.
        !           290:       END IF
        !           291:       IF( ILBSCL )
        !           292:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
        !           293: *
        !           294: *     Permute the matrices A, B to isolate eigenvalues if possible
        !           295: *     (Real Workspace: need 6*N)
        !           296: *
        !           297:       ILEFT = 1
        !           298:       IRIGHT = N + 1
        !           299:       IRWRK = IRIGHT + N
        !           300:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
        !           301:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
        !           302: *
        !           303: *     Reduce B to triangular form (QR decomposition of B)
        !           304: *     (Complex Workspace: need N, prefer N*NB)
        !           305: *
        !           306:       IROWS = IHI + 1 - ILO
        !           307:       IF( ILV ) THEN
        !           308:          ICOLS = N + 1 - ILO
        !           309:       ELSE
        !           310:          ICOLS = IROWS
        !           311:       END IF
        !           312:       ITAU = 1
        !           313:       IWRK = ITAU + IROWS
        !           314:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
        !           315:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           316: *
        !           317: *     Apply the orthogonal transformation to matrix A
        !           318: *     (Complex Workspace: need N, prefer N*NB)
        !           319: *
        !           320:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
        !           321:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
        !           322:      $             LWORK+1-IWRK, IERR )
        !           323: *
        !           324: *     Initialize VL
        !           325: *     (Complex Workspace: need N, prefer N*NB)
        !           326: *
        !           327:       IF( ILVL ) THEN
        !           328:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
        !           329:          IF( IROWS.GT.1 ) THEN
        !           330:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
        !           331:      $                   VL( ILO+1, ILO ), LDVL )
        !           332:          END IF
        !           333:          CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
        !           334:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           335:       END IF
        !           336: *
        !           337: *     Initialize VR
        !           338: *
        !           339:       IF( ILVR )
        !           340:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
        !           341: *
        !           342: *     Reduce to generalized Hessenberg form
        !           343: *
        !           344:       IF( ILV ) THEN
        !           345: *
        !           346: *        Eigenvectors requested -- work on whole matrix.
        !           347: *
        !           348:          CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
        !           349:      $                LDVL, VR, LDVR, IERR )
        !           350:       ELSE
        !           351:          CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
        !           352:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
        !           353:       END IF
        !           354: *
        !           355: *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
        !           356: *     Schur form and Schur vectors)
        !           357: *     (Complex Workspace: need N)
        !           358: *     (Real Workspace: need N)
        !           359: *
        !           360:       IWRK = ITAU
        !           361:       IF( ILV ) THEN
        !           362:          CHTEMP = 'S'
        !           363:       ELSE
        !           364:          CHTEMP = 'E'
        !           365:       END IF
        !           366:       CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
        !           367:      $             ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
        !           368:      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
        !           369:       IF( IERR.NE.0 ) THEN
        !           370:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
        !           371:             INFO = IERR
        !           372:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
        !           373:             INFO = IERR - N
        !           374:          ELSE
        !           375:             INFO = N + 1
        !           376:          END IF
        !           377:          GO TO 70
        !           378:       END IF
        !           379: *
        !           380: *     Compute Eigenvectors
        !           381: *     (Real Workspace: need 2*N)
        !           382: *     (Complex Workspace: need 2*N)
        !           383: *
        !           384:       IF( ILV ) THEN
        !           385:          IF( ILVL ) THEN
        !           386:             IF( ILVR ) THEN
        !           387:                CHTEMP = 'B'
        !           388:             ELSE
        !           389:                CHTEMP = 'L'
        !           390:             END IF
        !           391:          ELSE
        !           392:             CHTEMP = 'R'
        !           393:          END IF
        !           394: *
        !           395:          CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
        !           396:      $                VR, LDVR, N, IN, WORK( IWRK ), RWORK( IRWRK ),
        !           397:      $                IERR )
        !           398:          IF( IERR.NE.0 ) THEN
        !           399:             INFO = N + 2
        !           400:             GO TO 70
        !           401:          END IF
        !           402: *
        !           403: *        Undo balancing on VL and VR and normalization
        !           404: *        (Workspace: none needed)
        !           405: *
        !           406:          IF( ILVL ) THEN
        !           407:             CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
        !           408:      $                   RWORK( IRIGHT ), N, VL, LDVL, IERR )
        !           409:             DO 30 JC = 1, N
        !           410:                TEMP = ZERO
        !           411:                DO 10 JR = 1, N
        !           412:                   TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
        !           413:    10          CONTINUE
        !           414:                IF( TEMP.LT.SMLNUM )
        !           415:      $            GO TO 30
        !           416:                TEMP = ONE / TEMP
        !           417:                DO 20 JR = 1, N
        !           418:                   VL( JR, JC ) = VL( JR, JC )*TEMP
        !           419:    20          CONTINUE
        !           420:    30       CONTINUE
        !           421:          END IF
        !           422:          IF( ILVR ) THEN
        !           423:             CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
        !           424:      $                   RWORK( IRIGHT ), N, VR, LDVR, IERR )
        !           425:             DO 60 JC = 1, N
        !           426:                TEMP = ZERO
        !           427:                DO 40 JR = 1, N
        !           428:                   TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
        !           429:    40          CONTINUE
        !           430:                IF( TEMP.LT.SMLNUM )
        !           431:      $            GO TO 60
        !           432:                TEMP = ONE / TEMP
        !           433:                DO 50 JR = 1, N
        !           434:                   VR( JR, JC ) = VR( JR, JC )*TEMP
        !           435:    50          CONTINUE
        !           436:    60       CONTINUE
        !           437:          END IF
        !           438:       END IF
        !           439: *
        !           440: *     Undo scaling if necessary
        !           441: *
        !           442:       IF( ILASCL )
        !           443:      $   CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
        !           444: *
        !           445:       IF( ILBSCL )
        !           446:      $   CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
        !           447: *
        !           448:    70 CONTINUE
        !           449:       WORK( 1 ) = LWKOPT
        !           450: *
        !           451:       RETURN
        !           452: *
        !           453: *     End of ZGGEV
        !           454: *
        !           455:       END

CVSweb interface <joel.bertrand@systella.fr>