Annotation of rpl/lapack/lapack/zggesx.f, revision 1.8

1.8     ! bertrand    1: *> \brief <b> ZGGESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZGGESX + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggesx.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggesx.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggesx.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
        !            22: *                          B, LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR,
        !            23: *                          LDVSR, RCONDE, RCONDV, WORK, LWORK, RWORK,
        !            24: *                          IWORK, LIWORK, BWORK, INFO )
        !            25: * 
        !            26: *       .. Scalar Arguments ..
        !            27: *       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
        !            28: *       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
        !            29: *      $                   SDIM
        !            30: *       ..
        !            31: *       .. Array Arguments ..
        !            32: *       LOGICAL            BWORK( * )
        !            33: *       INTEGER            IWORK( * )
        !            34: *       DOUBLE PRECISION   RCONDE( 2 ), RCONDV( 2 ), RWORK( * )
        !            35: *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
        !            36: *      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
        !            37: *      $                   WORK( * )
        !            38: *       ..
        !            39: *       .. Function Arguments ..
        !            40: *       LOGICAL            SELCTG
        !            41: *       EXTERNAL           SELCTG
        !            42: *       ..
        !            43: *  
        !            44: *
        !            45: *> \par Purpose:
        !            46: *  =============
        !            47: *>
        !            48: *> \verbatim
        !            49: *>
        !            50: *> ZGGESX computes for a pair of N-by-N complex nonsymmetric matrices
        !            51: *> (A,B), the generalized eigenvalues, the complex Schur form (S,T),
        !            52: *> and, optionally, the left and/or right matrices of Schur vectors (VSL
        !            53: *> and VSR).  This gives the generalized Schur factorization
        !            54: *>
        !            55: *>      (A,B) = ( (VSL) S (VSR)**H, (VSL) T (VSR)**H )
        !            56: *>
        !            57: *> where (VSR)**H is the conjugate-transpose of VSR.
        !            58: *>
        !            59: *> Optionally, it also orders the eigenvalues so that a selected cluster
        !            60: *> of eigenvalues appears in the leading diagonal blocks of the upper
        !            61: *> triangular matrix S and the upper triangular matrix T; computes
        !            62: *> a reciprocal condition number for the average of the selected
        !            63: *> eigenvalues (RCONDE); and computes a reciprocal condition number for
        !            64: *> the right and left deflating subspaces corresponding to the selected
        !            65: *> eigenvalues (RCONDV). The leading columns of VSL and VSR then form
        !            66: *> an orthonormal basis for the corresponding left and right eigenspaces
        !            67: *> (deflating subspaces).
        !            68: *>
        !            69: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
        !            70: *> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
        !            71: *> usually represented as the pair (alpha,beta), as there is a
        !            72: *> reasonable interpretation for beta=0 or for both being zero.
        !            73: *>
        !            74: *> A pair of matrices (S,T) is in generalized complex Schur form if T is
        !            75: *> upper triangular with non-negative diagonal and S is upper
        !            76: *> triangular.
        !            77: *> \endverbatim
        !            78: *
        !            79: *  Arguments:
        !            80: *  ==========
        !            81: *
        !            82: *> \param[in] JOBVSL
        !            83: *> \verbatim
        !            84: *>          JOBVSL is CHARACTER*1
        !            85: *>          = 'N':  do not compute the left Schur vectors;
        !            86: *>          = 'V':  compute the left Schur vectors.
        !            87: *> \endverbatim
        !            88: *>
        !            89: *> \param[in] JOBVSR
        !            90: *> \verbatim
        !            91: *>          JOBVSR is CHARACTER*1
        !            92: *>          = 'N':  do not compute the right Schur vectors;
        !            93: *>          = 'V':  compute the right Schur vectors.
        !            94: *> \endverbatim
        !            95: *>
        !            96: *> \param[in] SORT
        !            97: *> \verbatim
        !            98: *>          SORT is CHARACTER*1
        !            99: *>          Specifies whether or not to order the eigenvalues on the
        !           100: *>          diagonal of the generalized Schur form.
        !           101: *>          = 'N':  Eigenvalues are not ordered;
        !           102: *>          = 'S':  Eigenvalues are ordered (see SELCTG).
        !           103: *> \endverbatim
        !           104: *>
        !           105: *> \param[in] SELCTG
        !           106: *> \verbatim
        !           107: *>          SELCTG is procedure) LOGICAL FUNCTION of two COMPLEX*16 arguments
        !           108: *>          SELCTG must be declared EXTERNAL in the calling subroutine.
        !           109: *>          If SORT = 'N', SELCTG is not referenced.
        !           110: *>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
        !           111: *>          to the top left of the Schur form.
        !           112: *>          Note that a selected complex eigenvalue may no longer satisfy
        !           113: *>          SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
        !           114: *>          ordering may change the value of complex eigenvalues
        !           115: *>          (especially if the eigenvalue is ill-conditioned), in this
        !           116: *>          case INFO is set to N+3 see INFO below).
        !           117: *> \endverbatim
        !           118: *>
        !           119: *> \param[in] SENSE
        !           120: *> \verbatim
        !           121: *>          SENSE is CHARACTER*1
        !           122: *>          Determines which reciprocal condition numbers are computed.
        !           123: *>          = 'N' : None are computed;
        !           124: *>          = 'E' : Computed for average of selected eigenvalues only;
        !           125: *>          = 'V' : Computed for selected deflating subspaces only;
        !           126: *>          = 'B' : Computed for both.
        !           127: *>          If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
        !           128: *> \endverbatim
        !           129: *>
        !           130: *> \param[in] N
        !           131: *> \verbatim
        !           132: *>          N is INTEGER
        !           133: *>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[in,out] A
        !           137: *> \verbatim
        !           138: *>          A is COMPLEX*16 array, dimension (LDA, N)
        !           139: *>          On entry, the first of the pair of matrices.
        !           140: *>          On exit, A has been overwritten by its generalized Schur
        !           141: *>          form S.
        !           142: *> \endverbatim
        !           143: *>
        !           144: *> \param[in] LDA
        !           145: *> \verbatim
        !           146: *>          LDA is INTEGER
        !           147: *>          The leading dimension of A.  LDA >= max(1,N).
        !           148: *> \endverbatim
        !           149: *>
        !           150: *> \param[in,out] B
        !           151: *> \verbatim
        !           152: *>          B is COMPLEX*16 array, dimension (LDB, N)
        !           153: *>          On entry, the second of the pair of matrices.
        !           154: *>          On exit, B has been overwritten by its generalized Schur
        !           155: *>          form T.
        !           156: *> \endverbatim
        !           157: *>
        !           158: *> \param[in] LDB
        !           159: *> \verbatim
        !           160: *>          LDB is INTEGER
        !           161: *>          The leading dimension of B.  LDB >= max(1,N).
        !           162: *> \endverbatim
        !           163: *>
        !           164: *> \param[out] SDIM
        !           165: *> \verbatim
        !           166: *>          SDIM is INTEGER
        !           167: *>          If SORT = 'N', SDIM = 0.
        !           168: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
        !           169: *>          for which SELCTG is true.
        !           170: *> \endverbatim
        !           171: *>
        !           172: *> \param[out] ALPHA
        !           173: *> \verbatim
        !           174: *>          ALPHA is COMPLEX*16 array, dimension (N)
        !           175: *> \endverbatim
        !           176: *>
        !           177: *> \param[out] BETA
        !           178: *> \verbatim
        !           179: *>          BETA is COMPLEX*16 array, dimension (N)
        !           180: *>          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
        !           181: *>          generalized eigenvalues.  ALPHA(j) and BETA(j),j=1,...,N  are
        !           182: *>          the diagonals of the complex Schur form (S,T).  BETA(j) will
        !           183: *>          be non-negative real.
        !           184: *>
        !           185: *>          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
        !           186: *>          underflow, and BETA(j) may even be zero.  Thus, the user
        !           187: *>          should avoid naively computing the ratio alpha/beta.
        !           188: *>          However, ALPHA will be always less than and usually
        !           189: *>          comparable with norm(A) in magnitude, and BETA always less
        !           190: *>          than and usually comparable with norm(B).
        !           191: *> \endverbatim
        !           192: *>
        !           193: *> \param[out] VSL
        !           194: *> \verbatim
        !           195: *>          VSL is COMPLEX*16 array, dimension (LDVSL,N)
        !           196: *>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
        !           197: *>          Not referenced if JOBVSL = 'N'.
        !           198: *> \endverbatim
        !           199: *>
        !           200: *> \param[in] LDVSL
        !           201: *> \verbatim
        !           202: *>          LDVSL is INTEGER
        !           203: *>          The leading dimension of the matrix VSL. LDVSL >=1, and
        !           204: *>          if JOBVSL = 'V', LDVSL >= N.
        !           205: *> \endverbatim
        !           206: *>
        !           207: *> \param[out] VSR
        !           208: *> \verbatim
        !           209: *>          VSR is COMPLEX*16 array, dimension (LDVSR,N)
        !           210: *>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
        !           211: *>          Not referenced if JOBVSR = 'N'.
        !           212: *> \endverbatim
        !           213: *>
        !           214: *> \param[in] LDVSR
        !           215: *> \verbatim
        !           216: *>          LDVSR is INTEGER
        !           217: *>          The leading dimension of the matrix VSR. LDVSR >= 1, and
        !           218: *>          if JOBVSR = 'V', LDVSR >= N.
        !           219: *> \endverbatim
        !           220: *>
        !           221: *> \param[out] RCONDE
        !           222: *> \verbatim
        !           223: *>          RCONDE is DOUBLE PRECISION array, dimension ( 2 )
        !           224: *>          If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the
        !           225: *>          reciprocal condition numbers for the average of the selected
        !           226: *>          eigenvalues.
        !           227: *>          Not referenced if SENSE = 'N' or 'V'.
        !           228: *> \endverbatim
        !           229: *>
        !           230: *> \param[out] RCONDV
        !           231: *> \verbatim
        !           232: *>          RCONDV is DOUBLE PRECISION array, dimension ( 2 )
        !           233: *>          If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the
        !           234: *>          reciprocal condition number for the selected deflating
        !           235: *>          subspaces.
        !           236: *>          Not referenced if SENSE = 'N' or 'E'.
        !           237: *> \endverbatim
        !           238: *>
        !           239: *> \param[out] WORK
        !           240: *> \verbatim
        !           241: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           242: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           243: *> \endverbatim
        !           244: *>
        !           245: *> \param[in] LWORK
        !           246: *> \verbatim
        !           247: *>          LWORK is INTEGER
        !           248: *>          The dimension of the array WORK.
        !           249: *>          If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B',
        !           250: *>          LWORK >= MAX(1,2*N,2*SDIM*(N-SDIM)), else
        !           251: *>          LWORK >= MAX(1,2*N).  Note that 2*SDIM*(N-SDIM) <= N*N/2.
        !           252: *>          Note also that an error is only returned if
        !           253: *>          LWORK < MAX(1,2*N), but if SENSE = 'E' or 'V' or 'B' this may
        !           254: *>          not be large enough.
        !           255: *>
        !           256: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           257: *>          only calculates the bound on the optimal size of the WORK
        !           258: *>          array and the minimum size of the IWORK array, returns these
        !           259: *>          values as the first entries of the WORK and IWORK arrays, and
        !           260: *>          no error message related to LWORK or LIWORK is issued by
        !           261: *>          XERBLA.
        !           262: *> \endverbatim
        !           263: *>
        !           264: *> \param[out] RWORK
        !           265: *> \verbatim
        !           266: *>          RWORK is DOUBLE PRECISION array, dimension ( 8*N )
        !           267: *>          Real workspace.
        !           268: *> \endverbatim
        !           269: *>
        !           270: *> \param[out] IWORK
        !           271: *> \verbatim
        !           272: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
        !           273: *>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
        !           274: *> \endverbatim
        !           275: *>
        !           276: *> \param[in] LIWORK
        !           277: *> \verbatim
        !           278: *>          LIWORK is INTEGER
        !           279: *>          The dimension of the array IWORK.
        !           280: *>          If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
        !           281: *>          LIWORK >= N+2.
        !           282: *>
        !           283: *>          If LIWORK = -1, then a workspace query is assumed; the
        !           284: *>          routine only calculates the bound on the optimal size of the
        !           285: *>          WORK array and the minimum size of the IWORK array, returns
        !           286: *>          these values as the first entries of the WORK and IWORK
        !           287: *>          arrays, and no error message related to LWORK or LIWORK is
        !           288: *>          issued by XERBLA.
        !           289: *> \endverbatim
        !           290: *>
        !           291: *> \param[out] BWORK
        !           292: *> \verbatim
        !           293: *>          BWORK is LOGICAL array, dimension (N)
        !           294: *>          Not referenced if SORT = 'N'.
        !           295: *> \endverbatim
        !           296: *>
        !           297: *> \param[out] INFO
        !           298: *> \verbatim
        !           299: *>          INFO is INTEGER
        !           300: *>          = 0:  successful exit
        !           301: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           302: *>          = 1,...,N:
        !           303: *>                The QZ iteration failed.  (A,B) are not in Schur
        !           304: *>                form, but ALPHA(j) and BETA(j) should be correct for
        !           305: *>                j=INFO+1,...,N.
        !           306: *>          > N:  =N+1: other than QZ iteration failed in ZHGEQZ
        !           307: *>                =N+2: after reordering, roundoff changed values of
        !           308: *>                      some complex eigenvalues so that leading
        !           309: *>                      eigenvalues in the Generalized Schur form no
        !           310: *>                      longer satisfy SELCTG=.TRUE.  This could also
        !           311: *>                      be caused due to scaling.
        !           312: *>                =N+3: reordering failed in ZTGSEN.
        !           313: *> \endverbatim
        !           314: *
        !           315: *  Authors:
        !           316: *  ========
        !           317: *
        !           318: *> \author Univ. of Tennessee 
        !           319: *> \author Univ. of California Berkeley 
        !           320: *> \author Univ. of Colorado Denver 
        !           321: *> \author NAG Ltd. 
        !           322: *
        !           323: *> \date November 2011
        !           324: *
        !           325: *> \ingroup complex16GEeigen
        !           326: *
        !           327: *  =====================================================================
1.1       bertrand  328:       SUBROUTINE ZGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
                    329:      $                   B, LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR,
                    330:      $                   LDVSR, RCONDE, RCONDV, WORK, LWORK, RWORK,
                    331:      $                   IWORK, LIWORK, BWORK, INFO )
                    332: *
1.8     ! bertrand  333: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  334: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    335: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  336: *     November 2011
1.1       bertrand  337: *
                    338: *     .. Scalar Arguments ..
                    339:       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
                    340:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
                    341:      $                   SDIM
                    342: *     ..
                    343: *     .. Array Arguments ..
                    344:       LOGICAL            BWORK( * )
                    345:       INTEGER            IWORK( * )
                    346:       DOUBLE PRECISION   RCONDE( 2 ), RCONDV( 2 ), RWORK( * )
                    347:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                    348:      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
                    349:      $                   WORK( * )
                    350: *     ..
                    351: *     .. Function Arguments ..
                    352:       LOGICAL            SELCTG
                    353:       EXTERNAL           SELCTG
                    354: *     ..
                    355: *
                    356: *  =====================================================================
                    357: *
                    358: *     .. Parameters ..
                    359:       DOUBLE PRECISION   ZERO, ONE
                    360:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    361:       COMPLEX*16         CZERO, CONE
                    362:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    363:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    364: *     ..
                    365: *     .. Local Scalars ..
                    366:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
                    367:      $                   LQUERY, WANTSB, WANTSE, WANTSN, WANTST, WANTSV
                    368:       INTEGER            I, ICOLS, IERR, IHI, IJOB, IJOBVL, IJOBVR,
                    369:      $                   ILEFT, ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK,
                    370:      $                   LIWMIN, LWRK, MAXWRK, MINWRK
                    371:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PL,
                    372:      $                   PR, SMLNUM
                    373: *     ..
                    374: *     .. Local Arrays ..
                    375:       DOUBLE PRECISION   DIF( 2 )
                    376: *     ..
                    377: *     .. External Subroutines ..
                    378:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
                    379:      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR,
                    380:      $                   ZUNMQR
                    381: *     ..
                    382: *     .. External Functions ..
                    383:       LOGICAL            LSAME
                    384:       INTEGER            ILAENV
                    385:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    386:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
                    387: *     ..
                    388: *     .. Intrinsic Functions ..
                    389:       INTRINSIC          MAX, SQRT
                    390: *     ..
                    391: *     .. Executable Statements ..
                    392: *
                    393: *     Decode the input arguments
                    394: *
                    395:       IF( LSAME( JOBVSL, 'N' ) ) THEN
                    396:          IJOBVL = 1
                    397:          ILVSL = .FALSE.
                    398:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
                    399:          IJOBVL = 2
                    400:          ILVSL = .TRUE.
                    401:       ELSE
                    402:          IJOBVL = -1
                    403:          ILVSL = .FALSE.
                    404:       END IF
                    405: *
                    406:       IF( LSAME( JOBVSR, 'N' ) ) THEN
                    407:          IJOBVR = 1
                    408:          ILVSR = .FALSE.
                    409:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
                    410:          IJOBVR = 2
                    411:          ILVSR = .TRUE.
                    412:       ELSE
                    413:          IJOBVR = -1
                    414:          ILVSR = .FALSE.
                    415:       END IF
                    416: *
                    417:       WANTST = LSAME( SORT, 'S' )
                    418:       WANTSN = LSAME( SENSE, 'N' )
                    419:       WANTSE = LSAME( SENSE, 'E' )
                    420:       WANTSV = LSAME( SENSE, 'V' )
                    421:       WANTSB = LSAME( SENSE, 'B' )
                    422:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    423:       IF( WANTSN ) THEN
                    424:          IJOB = 0
                    425:       ELSE IF( WANTSE ) THEN
                    426:          IJOB = 1
                    427:       ELSE IF( WANTSV ) THEN
                    428:          IJOB = 2
                    429:       ELSE IF( WANTSB ) THEN
                    430:          IJOB = 4
                    431:       END IF
                    432: *
                    433: *     Test the input arguments
                    434: *
                    435:       INFO = 0
                    436:       IF( IJOBVL.LE.0 ) THEN
                    437:          INFO = -1
                    438:       ELSE IF( IJOBVR.LE.0 ) THEN
                    439:          INFO = -2
                    440:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    441:          INFO = -3
                    442:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
                    443:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
                    444:          INFO = -5
                    445:       ELSE IF( N.LT.0 ) THEN
                    446:          INFO = -6
                    447:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    448:          INFO = -8
                    449:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    450:          INFO = -10
                    451:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
                    452:          INFO = -15
                    453:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
                    454:          INFO = -17
                    455:       END IF
                    456: *
                    457: *     Compute workspace
                    458: *      (Note: Comments in the code beginning "Workspace:" describe the
                    459: *       minimal amount of workspace needed at that point in the code,
                    460: *       as well as the preferred amount for good performance.
                    461: *       NB refers to the optimal block size for the immediately
                    462: *       following subroutine, as returned by ILAENV.)
                    463: *
                    464:       IF( INFO.EQ.0 ) THEN
                    465:          IF( N.GT.0) THEN
                    466:             MINWRK = 2*N
                    467:             MAXWRK = N*(1 + ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
                    468:             MAXWRK = MAX( MAXWRK, N*( 1 +
                    469:      $                    ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, -1 ) ) )
                    470:             IF( ILVSL ) THEN
                    471:                MAXWRK = MAX( MAXWRK, N*( 1 +
                    472:      $                       ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) ) )
                    473:             END IF
                    474:             LWRK = MAXWRK
                    475:             IF( IJOB.GE.1 )
                    476:      $         LWRK = MAX( LWRK, N*N/2 )
                    477:          ELSE
                    478:             MINWRK = 1
                    479:             MAXWRK = 1
                    480:             LWRK   = 1
                    481:          END IF
                    482:          WORK( 1 ) = LWRK
                    483:          IF( WANTSN .OR. N.EQ.0 ) THEN
                    484:             LIWMIN = 1
                    485:          ELSE
                    486:             LIWMIN = N + 2
                    487:          END IF
                    488:          IWORK( 1 ) = LIWMIN
                    489: *
                    490:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    491:             INFO = -21
                    492:          ELSE IF( LIWORK.LT.LIWMIN  .AND. .NOT.LQUERY) THEN
                    493:             INFO = -24
                    494:          END IF
                    495:       END IF
                    496: *
                    497:       IF( INFO.NE.0 ) THEN
                    498:          CALL XERBLA( 'ZGGESX', -INFO )
                    499:          RETURN
                    500:       ELSE IF (LQUERY) THEN
                    501:          RETURN
                    502:       END IF
                    503: *
                    504: *     Quick return if possible
                    505: *
                    506:       IF( N.EQ.0 ) THEN
                    507:          SDIM = 0
                    508:          RETURN
                    509:       END IF
                    510: *
                    511: *     Get machine constants
                    512: *
                    513:       EPS = DLAMCH( 'P' )
                    514:       SMLNUM = DLAMCH( 'S' )
                    515:       BIGNUM = ONE / SMLNUM
                    516:       CALL DLABAD( SMLNUM, BIGNUM )
                    517:       SMLNUM = SQRT( SMLNUM ) / EPS
                    518:       BIGNUM = ONE / SMLNUM
                    519: *
                    520: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    521: *
                    522:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
                    523:       ILASCL = .FALSE.
                    524:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    525:          ANRMTO = SMLNUM
                    526:          ILASCL = .TRUE.
                    527:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    528:          ANRMTO = BIGNUM
                    529:          ILASCL = .TRUE.
                    530:       END IF
                    531:       IF( ILASCL )
                    532:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
                    533: *
                    534: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    535: *
                    536:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
                    537:       ILBSCL = .FALSE.
                    538:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    539:          BNRMTO = SMLNUM
                    540:          ILBSCL = .TRUE.
                    541:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    542:          BNRMTO = BIGNUM
                    543:          ILBSCL = .TRUE.
                    544:       END IF
                    545:       IF( ILBSCL )
                    546:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
                    547: *
                    548: *     Permute the matrix to make it more nearly triangular
                    549: *     (Real Workspace: need 6*N)
                    550: *
                    551:       ILEFT = 1
                    552:       IRIGHT = N + 1
                    553:       IRWRK = IRIGHT + N
                    554:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
                    555:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
                    556: *
                    557: *     Reduce B to triangular form (QR decomposition of B)
                    558: *     (Complex Workspace: need N, prefer N*NB)
                    559: *
                    560:       IROWS = IHI + 1 - ILO
                    561:       ICOLS = N + 1 - ILO
                    562:       ITAU = 1
                    563:       IWRK = ITAU + IROWS
                    564:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    565:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    566: *
                    567: *     Apply the unitary transformation to matrix A
                    568: *     (Complex Workspace: need N, prefer N*NB)
                    569: *
                    570:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    571:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
                    572:      $             LWORK+1-IWRK, IERR )
                    573: *
                    574: *     Initialize VSL
                    575: *     (Complex Workspace: need N, prefer N*NB)
                    576: *
                    577:       IF( ILVSL ) THEN
                    578:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
                    579:          IF( IROWS.GT.1 ) THEN
                    580:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    581:      $                   VSL( ILO+1, ILO ), LDVSL )
                    582:          END IF
                    583:          CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
                    584:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
                    585:       END IF
                    586: *
                    587: *     Initialize VSR
                    588: *
                    589:       IF( ILVSR )
                    590:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
                    591: *
                    592: *     Reduce to generalized Hessenberg form
                    593: *     (Workspace: none needed)
                    594: *
                    595:       CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
                    596:      $             LDVSL, VSR, LDVSR, IERR )
                    597: *
                    598:       SDIM = 0
                    599: *
                    600: *     Perform QZ algorithm, computing Schur vectors if desired
                    601: *     (Complex Workspace: need N)
                    602: *     (Real Workspace:    need N)
                    603: *
                    604:       IWRK = ITAU
                    605:       CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
                    606:      $             ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWRK ),
                    607:      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
                    608:       IF( IERR.NE.0 ) THEN
                    609:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
                    610:             INFO = IERR
                    611:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
                    612:             INFO = IERR - N
                    613:          ELSE
                    614:             INFO = N + 1
                    615:          END IF
                    616:          GO TO 40
                    617:       END IF
                    618: *
                    619: *     Sort eigenvalues ALPHA/BETA and compute the reciprocal of
                    620: *     condition number(s)
                    621: *
                    622:       IF( WANTST ) THEN
                    623: *
                    624: *        Undo scaling on eigenvalues before SELCTGing
                    625: *
                    626:          IF( ILASCL )
                    627:      $      CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
                    628:          IF( ILBSCL )
                    629:      $      CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    630: *
                    631: *        Select eigenvalues
                    632: *
                    633:          DO 10 I = 1, N
                    634:             BWORK( I ) = SELCTG( ALPHA( I ), BETA( I ) )
                    635:    10    CONTINUE
                    636: *
                    637: *        Reorder eigenvalues, transform Generalized Schur vectors, and
                    638: *        compute reciprocal condition numbers
                    639: *        (Complex Workspace: If IJOB >= 1, need MAX(1, 2*SDIM*(N-SDIM))
                    640: *                            otherwise, need 1 )
                    641: *
                    642:          CALL ZTGSEN( IJOB, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
                    643:      $                ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PL, PR,
                    644:      $                DIF, WORK( IWRK ), LWORK-IWRK+1, IWORK, LIWORK,
                    645:      $                IERR )
                    646: *
                    647:          IF( IJOB.GE.1 )
                    648:      $      MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
                    649:          IF( IERR.EQ.-21 ) THEN
                    650: *
                    651: *            not enough complex workspace
                    652: *
                    653:             INFO = -21
                    654:          ELSE
                    655:             IF( IJOB.EQ.1 .OR. IJOB.EQ.4 ) THEN
                    656:                RCONDE( 1 ) = PL
                    657:                RCONDE( 2 ) = PR
                    658:             END IF
                    659:             IF( IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
                    660:                RCONDV( 1 ) = DIF( 1 )
                    661:                RCONDV( 2 ) = DIF( 2 )
                    662:             END IF
                    663:             IF( IERR.EQ.1 )
                    664:      $         INFO = N + 3
                    665:          END IF
                    666: *
                    667:       END IF
                    668: *
                    669: *     Apply permutation to VSL and VSR
                    670: *     (Workspace: none needed)
                    671: *
                    672:       IF( ILVSL )
                    673:      $   CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
                    674:      $                RWORK( IRIGHT ), N, VSL, LDVSL, IERR )
                    675: *
                    676:       IF( ILVSR )
                    677:      $   CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
                    678:      $                RWORK( IRIGHT ), N, VSR, LDVSR, IERR )
                    679: *
                    680: *     Undo scaling
                    681: *
                    682:       IF( ILASCL ) THEN
                    683:          CALL ZLASCL( 'U', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
                    684:          CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
                    685:       END IF
                    686: *
                    687:       IF( ILBSCL ) THEN
                    688:          CALL ZLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
                    689:          CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    690:       END IF
                    691: *
                    692:       IF( WANTST ) THEN
                    693: *
                    694: *        Check if reordering is correct
                    695: *
                    696:          LASTSL = .TRUE.
                    697:          SDIM = 0
                    698:          DO 30 I = 1, N
                    699:             CURSL = SELCTG( ALPHA( I ), BETA( I ) )
                    700:             IF( CURSL )
                    701:      $         SDIM = SDIM + 1
                    702:             IF( CURSL .AND. .NOT.LASTSL )
                    703:      $         INFO = N + 2
                    704:             LASTSL = CURSL
                    705:    30    CONTINUE
                    706: *
                    707:       END IF
                    708: *
                    709:    40 CONTINUE
                    710: *
                    711:       WORK( 1 ) = MAXWRK
                    712:       IWORK( 1 ) = LIWMIN
                    713: *
                    714:       RETURN
                    715: *
                    716: *     End of ZGGESX
                    717: *
                    718:       END

CVSweb interface <joel.bertrand@systella.fr>