Annotation of rpl/lapack/lapack/zggesx.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE ZGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
                      2:      $                   B, LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR,
                      3:      $                   LDVSR, RCONDE, RCONDV, WORK, LWORK, RWORK,
                      4:      $                   IWORK, LIWORK, BWORK, INFO )
                      5: *
                      6: *  -- LAPACK driver routine (version 3.2) --
                      7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      9: *     November 2006
                     10: *
                     11: *     .. Scalar Arguments ..
                     12:       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
                     13:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
                     14:      $                   SDIM
                     15: *     ..
                     16: *     .. Array Arguments ..
                     17:       LOGICAL            BWORK( * )
                     18:       INTEGER            IWORK( * )
                     19:       DOUBLE PRECISION   RCONDE( 2 ), RCONDV( 2 ), RWORK( * )
                     20:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                     21:      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
                     22:      $                   WORK( * )
                     23: *     ..
                     24: *     .. Function Arguments ..
                     25:       LOGICAL            SELCTG
                     26:       EXTERNAL           SELCTG
                     27: *     ..
                     28: *
                     29: *  Purpose
                     30: *  =======
                     31: *
                     32: *  ZGGESX computes for a pair of N-by-N complex nonsymmetric matrices
                     33: *  (A,B), the generalized eigenvalues, the complex Schur form (S,T),
                     34: *  and, optionally, the left and/or right matrices of Schur vectors (VSL
                     35: *  and VSR).  This gives the generalized Schur factorization
                     36: *
                     37: *       (A,B) = ( (VSL) S (VSR)**H, (VSL) T (VSR)**H )
                     38: *
                     39: *  where (VSR)**H is the conjugate-transpose of VSR.
                     40: *
                     41: *  Optionally, it also orders the eigenvalues so that a selected cluster
                     42: *  of eigenvalues appears in the leading diagonal blocks of the upper
                     43: *  triangular matrix S and the upper triangular matrix T; computes
                     44: *  a reciprocal condition number for the average of the selected
                     45: *  eigenvalues (RCONDE); and computes a reciprocal condition number for
                     46: *  the right and left deflating subspaces corresponding to the selected
                     47: *  eigenvalues (RCONDV). The leading columns of VSL and VSR then form
                     48: *  an orthonormal basis for the corresponding left and right eigenspaces
                     49: *  (deflating subspaces).
                     50: *
                     51: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
                     52: *  or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
                     53: *  usually represented as the pair (alpha,beta), as there is a
                     54: *  reasonable interpretation for beta=0 or for both being zero.
                     55: *
                     56: *  A pair of matrices (S,T) is in generalized complex Schur form if T is
                     57: *  upper triangular with non-negative diagonal and S is upper
                     58: *  triangular.
                     59: *
                     60: *  Arguments
                     61: *  =========
                     62: *
                     63: *  JOBVSL  (input) CHARACTER*1
                     64: *          = 'N':  do not compute the left Schur vectors;
                     65: *          = 'V':  compute the left Schur vectors.
                     66: *
                     67: *  JOBVSR  (input) CHARACTER*1
                     68: *          = 'N':  do not compute the right Schur vectors;
                     69: *          = 'V':  compute the right Schur vectors.
                     70: *
                     71: *  SORT    (input) CHARACTER*1
                     72: *          Specifies whether or not to order the eigenvalues on the
                     73: *          diagonal of the generalized Schur form.
                     74: *          = 'N':  Eigenvalues are not ordered;
                     75: *          = 'S':  Eigenvalues are ordered (see SELCTG).
                     76: *
                     77: *  SELCTG  (external procedure) LOGICAL FUNCTION of two COMPLEX*16 arguments
                     78: *          SELCTG must be declared EXTERNAL in the calling subroutine.
                     79: *          If SORT = 'N', SELCTG is not referenced.
                     80: *          If SORT = 'S', SELCTG is used to select eigenvalues to sort
                     81: *          to the top left of the Schur form.
                     82: *          Note that a selected complex eigenvalue may no longer satisfy
                     83: *          SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
                     84: *          ordering may change the value of complex eigenvalues
                     85: *          (especially if the eigenvalue is ill-conditioned), in this
                     86: *          case INFO is set to N+3 see INFO below).
                     87: *
                     88: *  SENSE   (input) CHARACTER*1
                     89: *          Determines which reciprocal condition numbers are computed.
                     90: *          = 'N' : None are computed;
                     91: *          = 'E' : Computed for average of selected eigenvalues only;
                     92: *          = 'V' : Computed for selected deflating subspaces only;
                     93: *          = 'B' : Computed for both.
                     94: *          If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
                     95: *
                     96: *  N       (input) INTEGER
                     97: *          The order of the matrices A, B, VSL, and VSR.  N >= 0.
                     98: *
                     99: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
                    100: *          On entry, the first of the pair of matrices.
                    101: *          On exit, A has been overwritten by its generalized Schur
                    102: *          form S.
                    103: *
                    104: *  LDA     (input) INTEGER
                    105: *          The leading dimension of A.  LDA >= max(1,N).
                    106: *
                    107: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
                    108: *          On entry, the second of the pair of matrices.
                    109: *          On exit, B has been overwritten by its generalized Schur
                    110: *          form T.
                    111: *
                    112: *  LDB     (input) INTEGER
                    113: *          The leading dimension of B.  LDB >= max(1,N).
                    114: *
                    115: *  SDIM    (output) INTEGER
                    116: *          If SORT = 'N', SDIM = 0.
                    117: *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                    118: *          for which SELCTG is true.
                    119: *
                    120: *  ALPHA   (output) COMPLEX*16 array, dimension (N)
                    121: *  BETA    (output) COMPLEX*16 array, dimension (N)
                    122: *          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
                    123: *          generalized eigenvalues.  ALPHA(j) and BETA(j),j=1,...,N  are
                    124: *          the diagonals of the complex Schur form (S,T).  BETA(j) will
                    125: *          be non-negative real.
                    126: *
                    127: *          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
                    128: *          underflow, and BETA(j) may even be zero.  Thus, the user
                    129: *          should avoid naively computing the ratio alpha/beta.
                    130: *          However, ALPHA will be always less than and usually
                    131: *          comparable with norm(A) in magnitude, and BETA always less
                    132: *          than and usually comparable with norm(B).
                    133: *
                    134: *  VSL     (output) COMPLEX*16 array, dimension (LDVSL,N)
                    135: *          If JOBVSL = 'V', VSL will contain the left Schur vectors.
                    136: *          Not referenced if JOBVSL = 'N'.
                    137: *
                    138: *  LDVSL   (input) INTEGER
                    139: *          The leading dimension of the matrix VSL. LDVSL >=1, and
                    140: *          if JOBVSL = 'V', LDVSL >= N.
                    141: *
                    142: *  VSR     (output) COMPLEX*16 array, dimension (LDVSR,N)
                    143: *          If JOBVSR = 'V', VSR will contain the right Schur vectors.
                    144: *          Not referenced if JOBVSR = 'N'.
                    145: *
                    146: *  LDVSR   (input) INTEGER
                    147: *          The leading dimension of the matrix VSR. LDVSR >= 1, and
                    148: *          if JOBVSR = 'V', LDVSR >= N.
                    149: *
                    150: *  RCONDE  (output) DOUBLE PRECISION array, dimension ( 2 )
                    151: *          If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the
                    152: *          reciprocal condition numbers for the average of the selected
                    153: *          eigenvalues.
                    154: *          Not referenced if SENSE = 'N' or 'V'.
                    155: *
                    156: *  RCONDV  (output) DOUBLE PRECISION array, dimension ( 2 )
                    157: *          If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the
                    158: *          reciprocal condition number for the selected deflating
                    159: *          subspaces.
                    160: *          Not referenced if SENSE = 'N' or 'E'.
                    161: *
                    162: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                    163: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    164: *
                    165: *  LWORK   (input) INTEGER
                    166: *          The dimension of the array WORK.
                    167: *          If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B',
                    168: *          LWORK >= MAX(1,2*N,2*SDIM*(N-SDIM)), else
                    169: *          LWORK >= MAX(1,2*N).  Note that 2*SDIM*(N-SDIM) <= N*N/2.
                    170: *          Note also that an error is only returned if
                    171: *          LWORK < MAX(1,2*N), but if SENSE = 'E' or 'V' or 'B' this may
                    172: *          not be large enough.
                    173: *
                    174: *          If LWORK = -1, then a workspace query is assumed; the routine
                    175: *          only calculates the bound on the optimal size of the WORK
                    176: *          array and the minimum size of the IWORK array, returns these
                    177: *          values as the first entries of the WORK and IWORK arrays, and
                    178: *          no error message related to LWORK or LIWORK is issued by
                    179: *          XERBLA.
                    180: *
                    181: *  RWORK   (workspace) DOUBLE PRECISION array, dimension ( 8*N )
                    182: *          Real workspace.
                    183: *
                    184: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
                    185: *          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
                    186: *
                    187: *  LIWORK  (input) INTEGER
                    188: *          The dimension of the array IWORK.
                    189: *          If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
                    190: *          LIWORK >= N+2.
                    191: *
                    192: *          If LIWORK = -1, then a workspace query is assumed; the
                    193: *          routine only calculates the bound on the optimal size of the
                    194: *          WORK array and the minimum size of the IWORK array, returns
                    195: *          these values as the first entries of the WORK and IWORK
                    196: *          arrays, and no error message related to LWORK or LIWORK is
                    197: *          issued by XERBLA.
                    198: *
                    199: *  BWORK   (workspace) LOGICAL array, dimension (N)
                    200: *          Not referenced if SORT = 'N'.
                    201: *
                    202: *  INFO    (output) INTEGER
                    203: *          = 0:  successful exit
                    204: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    205: *          = 1,...,N:
                    206: *                The QZ iteration failed.  (A,B) are not in Schur
                    207: *                form, but ALPHA(j) and BETA(j) should be correct for
                    208: *                j=INFO+1,...,N.
                    209: *          > N:  =N+1: other than QZ iteration failed in ZHGEQZ
                    210: *                =N+2: after reordering, roundoff changed values of
                    211: *                      some complex eigenvalues so that leading
                    212: *                      eigenvalues in the Generalized Schur form no
                    213: *                      longer satisfy SELCTG=.TRUE.  This could also
                    214: *                      be caused due to scaling.
                    215: *                =N+3: reordering failed in ZTGSEN.
                    216: *
                    217: *  =====================================================================
                    218: *
                    219: *     .. Parameters ..
                    220:       DOUBLE PRECISION   ZERO, ONE
                    221:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    222:       COMPLEX*16         CZERO, CONE
                    223:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    224:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    225: *     ..
                    226: *     .. Local Scalars ..
                    227:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
                    228:      $                   LQUERY, WANTSB, WANTSE, WANTSN, WANTST, WANTSV
                    229:       INTEGER            I, ICOLS, IERR, IHI, IJOB, IJOBVL, IJOBVR,
                    230:      $                   ILEFT, ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK,
                    231:      $                   LIWMIN, LWRK, MAXWRK, MINWRK
                    232:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PL,
                    233:      $                   PR, SMLNUM
                    234: *     ..
                    235: *     .. Local Arrays ..
                    236:       DOUBLE PRECISION   DIF( 2 )
                    237: *     ..
                    238: *     .. External Subroutines ..
                    239:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
                    240:      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR,
                    241:      $                   ZUNMQR
                    242: *     ..
                    243: *     .. External Functions ..
                    244:       LOGICAL            LSAME
                    245:       INTEGER            ILAENV
                    246:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    247:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
                    248: *     ..
                    249: *     .. Intrinsic Functions ..
                    250:       INTRINSIC          MAX, SQRT
                    251: *     ..
                    252: *     .. Executable Statements ..
                    253: *
                    254: *     Decode the input arguments
                    255: *
                    256:       IF( LSAME( JOBVSL, 'N' ) ) THEN
                    257:          IJOBVL = 1
                    258:          ILVSL = .FALSE.
                    259:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
                    260:          IJOBVL = 2
                    261:          ILVSL = .TRUE.
                    262:       ELSE
                    263:          IJOBVL = -1
                    264:          ILVSL = .FALSE.
                    265:       END IF
                    266: *
                    267:       IF( LSAME( JOBVSR, 'N' ) ) THEN
                    268:          IJOBVR = 1
                    269:          ILVSR = .FALSE.
                    270:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
                    271:          IJOBVR = 2
                    272:          ILVSR = .TRUE.
                    273:       ELSE
                    274:          IJOBVR = -1
                    275:          ILVSR = .FALSE.
                    276:       END IF
                    277: *
                    278:       WANTST = LSAME( SORT, 'S' )
                    279:       WANTSN = LSAME( SENSE, 'N' )
                    280:       WANTSE = LSAME( SENSE, 'E' )
                    281:       WANTSV = LSAME( SENSE, 'V' )
                    282:       WANTSB = LSAME( SENSE, 'B' )
                    283:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    284:       IF( WANTSN ) THEN
                    285:          IJOB = 0
                    286:       ELSE IF( WANTSE ) THEN
                    287:          IJOB = 1
                    288:       ELSE IF( WANTSV ) THEN
                    289:          IJOB = 2
                    290:       ELSE IF( WANTSB ) THEN
                    291:          IJOB = 4
                    292:       END IF
                    293: *
                    294: *     Test the input arguments
                    295: *
                    296:       INFO = 0
                    297:       IF( IJOBVL.LE.0 ) THEN
                    298:          INFO = -1
                    299:       ELSE IF( IJOBVR.LE.0 ) THEN
                    300:          INFO = -2
                    301:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    302:          INFO = -3
                    303:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
                    304:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
                    305:          INFO = -5
                    306:       ELSE IF( N.LT.0 ) THEN
                    307:          INFO = -6
                    308:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    309:          INFO = -8
                    310:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    311:          INFO = -10
                    312:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
                    313:          INFO = -15
                    314:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
                    315:          INFO = -17
                    316:       END IF
                    317: *
                    318: *     Compute workspace
                    319: *      (Note: Comments in the code beginning "Workspace:" describe the
                    320: *       minimal amount of workspace needed at that point in the code,
                    321: *       as well as the preferred amount for good performance.
                    322: *       NB refers to the optimal block size for the immediately
                    323: *       following subroutine, as returned by ILAENV.)
                    324: *
                    325:       IF( INFO.EQ.0 ) THEN
                    326:          IF( N.GT.0) THEN
                    327:             MINWRK = 2*N
                    328:             MAXWRK = N*(1 + ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
                    329:             MAXWRK = MAX( MAXWRK, N*( 1 +
                    330:      $                    ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, -1 ) ) )
                    331:             IF( ILVSL ) THEN
                    332:                MAXWRK = MAX( MAXWRK, N*( 1 +
                    333:      $                       ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) ) )
                    334:             END IF
                    335:             LWRK = MAXWRK
                    336:             IF( IJOB.GE.1 )
                    337:      $         LWRK = MAX( LWRK, N*N/2 )
                    338:          ELSE
                    339:             MINWRK = 1
                    340:             MAXWRK = 1
                    341:             LWRK   = 1
                    342:          END IF
                    343:          WORK( 1 ) = LWRK
                    344:          IF( WANTSN .OR. N.EQ.0 ) THEN
                    345:             LIWMIN = 1
                    346:          ELSE
                    347:             LIWMIN = N + 2
                    348:          END IF
                    349:          IWORK( 1 ) = LIWMIN
                    350: *
                    351:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    352:             INFO = -21
                    353:          ELSE IF( LIWORK.LT.LIWMIN  .AND. .NOT.LQUERY) THEN
                    354:             INFO = -24
                    355:          END IF
                    356:       END IF
                    357: *
                    358:       IF( INFO.NE.0 ) THEN
                    359:          CALL XERBLA( 'ZGGESX', -INFO )
                    360:          RETURN
                    361:       ELSE IF (LQUERY) THEN
                    362:          RETURN
                    363:       END IF
                    364: *
                    365: *     Quick return if possible
                    366: *
                    367:       IF( N.EQ.0 ) THEN
                    368:          SDIM = 0
                    369:          RETURN
                    370:       END IF
                    371: *
                    372: *     Get machine constants
                    373: *
                    374:       EPS = DLAMCH( 'P' )
                    375:       SMLNUM = DLAMCH( 'S' )
                    376:       BIGNUM = ONE / SMLNUM
                    377:       CALL DLABAD( SMLNUM, BIGNUM )
                    378:       SMLNUM = SQRT( SMLNUM ) / EPS
                    379:       BIGNUM = ONE / SMLNUM
                    380: *
                    381: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    382: *
                    383:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
                    384:       ILASCL = .FALSE.
                    385:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    386:          ANRMTO = SMLNUM
                    387:          ILASCL = .TRUE.
                    388:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    389:          ANRMTO = BIGNUM
                    390:          ILASCL = .TRUE.
                    391:       END IF
                    392:       IF( ILASCL )
                    393:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
                    394: *
                    395: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    396: *
                    397:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
                    398:       ILBSCL = .FALSE.
                    399:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    400:          BNRMTO = SMLNUM
                    401:          ILBSCL = .TRUE.
                    402:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    403:          BNRMTO = BIGNUM
                    404:          ILBSCL = .TRUE.
                    405:       END IF
                    406:       IF( ILBSCL )
                    407:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
                    408: *
                    409: *     Permute the matrix to make it more nearly triangular
                    410: *     (Real Workspace: need 6*N)
                    411: *
                    412:       ILEFT = 1
                    413:       IRIGHT = N + 1
                    414:       IRWRK = IRIGHT + N
                    415:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
                    416:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
                    417: *
                    418: *     Reduce B to triangular form (QR decomposition of B)
                    419: *     (Complex Workspace: need N, prefer N*NB)
                    420: *
                    421:       IROWS = IHI + 1 - ILO
                    422:       ICOLS = N + 1 - ILO
                    423:       ITAU = 1
                    424:       IWRK = ITAU + IROWS
                    425:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    426:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    427: *
                    428: *     Apply the unitary transformation to matrix A
                    429: *     (Complex Workspace: need N, prefer N*NB)
                    430: *
                    431:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    432:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
                    433:      $             LWORK+1-IWRK, IERR )
                    434: *
                    435: *     Initialize VSL
                    436: *     (Complex Workspace: need N, prefer N*NB)
                    437: *
                    438:       IF( ILVSL ) THEN
                    439:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
                    440:          IF( IROWS.GT.1 ) THEN
                    441:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    442:      $                   VSL( ILO+1, ILO ), LDVSL )
                    443:          END IF
                    444:          CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
                    445:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
                    446:       END IF
                    447: *
                    448: *     Initialize VSR
                    449: *
                    450:       IF( ILVSR )
                    451:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
                    452: *
                    453: *     Reduce to generalized Hessenberg form
                    454: *     (Workspace: none needed)
                    455: *
                    456:       CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
                    457:      $             LDVSL, VSR, LDVSR, IERR )
                    458: *
                    459:       SDIM = 0
                    460: *
                    461: *     Perform QZ algorithm, computing Schur vectors if desired
                    462: *     (Complex Workspace: need N)
                    463: *     (Real Workspace:    need N)
                    464: *
                    465:       IWRK = ITAU
                    466:       CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
                    467:      $             ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWRK ),
                    468:      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
                    469:       IF( IERR.NE.0 ) THEN
                    470:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
                    471:             INFO = IERR
                    472:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
                    473:             INFO = IERR - N
                    474:          ELSE
                    475:             INFO = N + 1
                    476:          END IF
                    477:          GO TO 40
                    478:       END IF
                    479: *
                    480: *     Sort eigenvalues ALPHA/BETA and compute the reciprocal of
                    481: *     condition number(s)
                    482: *
                    483:       IF( WANTST ) THEN
                    484: *
                    485: *        Undo scaling on eigenvalues before SELCTGing
                    486: *
                    487:          IF( ILASCL )
                    488:      $      CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
                    489:          IF( ILBSCL )
                    490:      $      CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    491: *
                    492: *        Select eigenvalues
                    493: *
                    494:          DO 10 I = 1, N
                    495:             BWORK( I ) = SELCTG( ALPHA( I ), BETA( I ) )
                    496:    10    CONTINUE
                    497: *
                    498: *        Reorder eigenvalues, transform Generalized Schur vectors, and
                    499: *        compute reciprocal condition numbers
                    500: *        (Complex Workspace: If IJOB >= 1, need MAX(1, 2*SDIM*(N-SDIM))
                    501: *                            otherwise, need 1 )
                    502: *
                    503:          CALL ZTGSEN( IJOB, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
                    504:      $                ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PL, PR,
                    505:      $                DIF, WORK( IWRK ), LWORK-IWRK+1, IWORK, LIWORK,
                    506:      $                IERR )
                    507: *
                    508:          IF( IJOB.GE.1 )
                    509:      $      MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
                    510:          IF( IERR.EQ.-21 ) THEN
                    511: *
                    512: *            not enough complex workspace
                    513: *
                    514:             INFO = -21
                    515:          ELSE
                    516:             IF( IJOB.EQ.1 .OR. IJOB.EQ.4 ) THEN
                    517:                RCONDE( 1 ) = PL
                    518:                RCONDE( 2 ) = PR
                    519:             END IF
                    520:             IF( IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
                    521:                RCONDV( 1 ) = DIF( 1 )
                    522:                RCONDV( 2 ) = DIF( 2 )
                    523:             END IF
                    524:             IF( IERR.EQ.1 )
                    525:      $         INFO = N + 3
                    526:          END IF
                    527: *
                    528:       END IF
                    529: *
                    530: *     Apply permutation to VSL and VSR
                    531: *     (Workspace: none needed)
                    532: *
                    533:       IF( ILVSL )
                    534:      $   CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
                    535:      $                RWORK( IRIGHT ), N, VSL, LDVSL, IERR )
                    536: *
                    537:       IF( ILVSR )
                    538:      $   CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
                    539:      $                RWORK( IRIGHT ), N, VSR, LDVSR, IERR )
                    540: *
                    541: *     Undo scaling
                    542: *
                    543:       IF( ILASCL ) THEN
                    544:          CALL ZLASCL( 'U', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
                    545:          CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
                    546:       END IF
                    547: *
                    548:       IF( ILBSCL ) THEN
                    549:          CALL ZLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
                    550:          CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    551:       END IF
                    552: *
                    553:       IF( WANTST ) THEN
                    554: *
                    555: *        Check if reordering is correct
                    556: *
                    557:          LASTSL = .TRUE.
                    558:          SDIM = 0
                    559:          DO 30 I = 1, N
                    560:             CURSL = SELCTG( ALPHA( I ), BETA( I ) )
                    561:             IF( CURSL )
                    562:      $         SDIM = SDIM + 1
                    563:             IF( CURSL .AND. .NOT.LASTSL )
                    564:      $         INFO = N + 2
                    565:             LASTSL = CURSL
                    566:    30    CONTINUE
                    567: *
                    568:       END IF
                    569: *
                    570:    40 CONTINUE
                    571: *
                    572:       WORK( 1 ) = MAXWRK
                    573:       IWORK( 1 ) = LIWMIN
                    574: *
                    575:       RETURN
                    576: *
                    577: *     End of ZGGESX
                    578: *
                    579:       END

CVSweb interface <joel.bertrand@systella.fr>