Annotation of rpl/lapack/lapack/zggesx.f, revision 1.19

1.8       bertrand    1: *> \brief <b> ZGGESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download ZGGESX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggesx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggesx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggesx.f">
1.8       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
                     22: *                          B, LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR,
                     23: *                          LDVSR, RCONDE, RCONDV, WORK, LWORK, RWORK,
                     24: *                          IWORK, LIWORK, BWORK, INFO )
1.14      bertrand   25: *
1.8       bertrand   26: *       .. Scalar Arguments ..
                     27: *       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
                     28: *       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
                     29: *      $                   SDIM
                     30: *       ..
                     31: *       .. Array Arguments ..
                     32: *       LOGICAL            BWORK( * )
                     33: *       INTEGER            IWORK( * )
                     34: *       DOUBLE PRECISION   RCONDE( 2 ), RCONDV( 2 ), RWORK( * )
                     35: *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                     36: *      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
                     37: *      $                   WORK( * )
                     38: *       ..
                     39: *       .. Function Arguments ..
                     40: *       LOGICAL            SELCTG
                     41: *       EXTERNAL           SELCTG
                     42: *       ..
1.14      bertrand   43: *
1.8       bertrand   44: *
                     45: *> \par Purpose:
                     46: *  =============
                     47: *>
                     48: *> \verbatim
                     49: *>
                     50: *> ZGGESX computes for a pair of N-by-N complex nonsymmetric matrices
                     51: *> (A,B), the generalized eigenvalues, the complex Schur form (S,T),
                     52: *> and, optionally, the left and/or right matrices of Schur vectors (VSL
                     53: *> and VSR).  This gives the generalized Schur factorization
                     54: *>
                     55: *>      (A,B) = ( (VSL) S (VSR)**H, (VSL) T (VSR)**H )
                     56: *>
                     57: *> where (VSR)**H is the conjugate-transpose of VSR.
                     58: *>
                     59: *> Optionally, it also orders the eigenvalues so that a selected cluster
                     60: *> of eigenvalues appears in the leading diagonal blocks of the upper
                     61: *> triangular matrix S and the upper triangular matrix T; computes
                     62: *> a reciprocal condition number for the average of the selected
                     63: *> eigenvalues (RCONDE); and computes a reciprocal condition number for
                     64: *> the right and left deflating subspaces corresponding to the selected
                     65: *> eigenvalues (RCONDV). The leading columns of VSL and VSR then form
                     66: *> an orthonormal basis for the corresponding left and right eigenspaces
                     67: *> (deflating subspaces).
                     68: *>
                     69: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
                     70: *> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
                     71: *> usually represented as the pair (alpha,beta), as there is a
                     72: *> reasonable interpretation for beta=0 or for both being zero.
                     73: *>
                     74: *> A pair of matrices (S,T) is in generalized complex Schur form if T is
                     75: *> upper triangular with non-negative diagonal and S is upper
                     76: *> triangular.
                     77: *> \endverbatim
                     78: *
                     79: *  Arguments:
                     80: *  ==========
                     81: *
                     82: *> \param[in] JOBVSL
                     83: *> \verbatim
                     84: *>          JOBVSL is CHARACTER*1
                     85: *>          = 'N':  do not compute the left Schur vectors;
                     86: *>          = 'V':  compute the left Schur vectors.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] JOBVSR
                     90: *> \verbatim
                     91: *>          JOBVSR is CHARACTER*1
                     92: *>          = 'N':  do not compute the right Schur vectors;
                     93: *>          = 'V':  compute the right Schur vectors.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] SORT
                     97: *> \verbatim
                     98: *>          SORT is CHARACTER*1
                     99: *>          Specifies whether or not to order the eigenvalues on the
                    100: *>          diagonal of the generalized Schur form.
                    101: *>          = 'N':  Eigenvalues are not ordered;
                    102: *>          = 'S':  Eigenvalues are ordered (see SELCTG).
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] SELCTG
                    106: *> \verbatim
1.16      bertrand  107: *>          SELCTG is a LOGICAL FUNCTION of two COMPLEX*16 arguments
1.8       bertrand  108: *>          SELCTG must be declared EXTERNAL in the calling subroutine.
                    109: *>          If SORT = 'N', SELCTG is not referenced.
                    110: *>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
                    111: *>          to the top left of the Schur form.
                    112: *>          Note that a selected complex eigenvalue may no longer satisfy
                    113: *>          SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
                    114: *>          ordering may change the value of complex eigenvalues
                    115: *>          (especially if the eigenvalue is ill-conditioned), in this
                    116: *>          case INFO is set to N+3 see INFO below).
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[in] SENSE
                    120: *> \verbatim
                    121: *>          SENSE is CHARACTER*1
                    122: *>          Determines which reciprocal condition numbers are computed.
1.18      bertrand  123: *>          = 'N': None are computed;
                    124: *>          = 'E': Computed for average of selected eigenvalues only;
                    125: *>          = 'V': Computed for selected deflating subspaces only;
                    126: *>          = 'B': Computed for both.
1.8       bertrand  127: *>          If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[in] N
                    131: *> \verbatim
                    132: *>          N is INTEGER
                    133: *>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[in,out] A
                    137: *> \verbatim
                    138: *>          A is COMPLEX*16 array, dimension (LDA, N)
                    139: *>          On entry, the first of the pair of matrices.
                    140: *>          On exit, A has been overwritten by its generalized Schur
                    141: *>          form S.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[in] LDA
                    145: *> \verbatim
                    146: *>          LDA is INTEGER
                    147: *>          The leading dimension of A.  LDA >= max(1,N).
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[in,out] B
                    151: *> \verbatim
                    152: *>          B is COMPLEX*16 array, dimension (LDB, N)
                    153: *>          On entry, the second of the pair of matrices.
                    154: *>          On exit, B has been overwritten by its generalized Schur
                    155: *>          form T.
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[in] LDB
                    159: *> \verbatim
                    160: *>          LDB is INTEGER
                    161: *>          The leading dimension of B.  LDB >= max(1,N).
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[out] SDIM
                    165: *> \verbatim
                    166: *>          SDIM is INTEGER
                    167: *>          If SORT = 'N', SDIM = 0.
                    168: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                    169: *>          for which SELCTG is true.
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[out] ALPHA
                    173: *> \verbatim
                    174: *>          ALPHA is COMPLEX*16 array, dimension (N)
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[out] BETA
                    178: *> \verbatim
                    179: *>          BETA is COMPLEX*16 array, dimension (N)
                    180: *>          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
                    181: *>          generalized eigenvalues.  ALPHA(j) and BETA(j),j=1,...,N  are
                    182: *>          the diagonals of the complex Schur form (S,T).  BETA(j) will
                    183: *>          be non-negative real.
                    184: *>
                    185: *>          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
                    186: *>          underflow, and BETA(j) may even be zero.  Thus, the user
                    187: *>          should avoid naively computing the ratio alpha/beta.
                    188: *>          However, ALPHA will be always less than and usually
                    189: *>          comparable with norm(A) in magnitude, and BETA always less
                    190: *>          than and usually comparable with norm(B).
                    191: *> \endverbatim
                    192: *>
                    193: *> \param[out] VSL
                    194: *> \verbatim
                    195: *>          VSL is COMPLEX*16 array, dimension (LDVSL,N)
                    196: *>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
                    197: *>          Not referenced if JOBVSL = 'N'.
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[in] LDVSL
                    201: *> \verbatim
                    202: *>          LDVSL is INTEGER
                    203: *>          The leading dimension of the matrix VSL. LDVSL >=1, and
                    204: *>          if JOBVSL = 'V', LDVSL >= N.
                    205: *> \endverbatim
                    206: *>
                    207: *> \param[out] VSR
                    208: *> \verbatim
                    209: *>          VSR is COMPLEX*16 array, dimension (LDVSR,N)
                    210: *>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
                    211: *>          Not referenced if JOBVSR = 'N'.
                    212: *> \endverbatim
                    213: *>
                    214: *> \param[in] LDVSR
                    215: *> \verbatim
                    216: *>          LDVSR is INTEGER
                    217: *>          The leading dimension of the matrix VSR. LDVSR >= 1, and
                    218: *>          if JOBVSR = 'V', LDVSR >= N.
                    219: *> \endverbatim
                    220: *>
                    221: *> \param[out] RCONDE
                    222: *> \verbatim
                    223: *>          RCONDE is DOUBLE PRECISION array, dimension ( 2 )
                    224: *>          If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the
                    225: *>          reciprocal condition numbers for the average of the selected
                    226: *>          eigenvalues.
                    227: *>          Not referenced if SENSE = 'N' or 'V'.
                    228: *> \endverbatim
                    229: *>
                    230: *> \param[out] RCONDV
                    231: *> \verbatim
                    232: *>          RCONDV is DOUBLE PRECISION array, dimension ( 2 )
                    233: *>          If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the
                    234: *>          reciprocal condition number for the selected deflating
                    235: *>          subspaces.
                    236: *>          Not referenced if SENSE = 'N' or 'E'.
                    237: *> \endverbatim
                    238: *>
                    239: *> \param[out] WORK
                    240: *> \verbatim
                    241: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    242: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    243: *> \endverbatim
                    244: *>
                    245: *> \param[in] LWORK
                    246: *> \verbatim
                    247: *>          LWORK is INTEGER
                    248: *>          The dimension of the array WORK.
                    249: *>          If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B',
                    250: *>          LWORK >= MAX(1,2*N,2*SDIM*(N-SDIM)), else
                    251: *>          LWORK >= MAX(1,2*N).  Note that 2*SDIM*(N-SDIM) <= N*N/2.
                    252: *>          Note also that an error is only returned if
                    253: *>          LWORK < MAX(1,2*N), but if SENSE = 'E' or 'V' or 'B' this may
                    254: *>          not be large enough.
                    255: *>
                    256: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    257: *>          only calculates the bound on the optimal size of the WORK
                    258: *>          array and the minimum size of the IWORK array, returns these
                    259: *>          values as the first entries of the WORK and IWORK arrays, and
                    260: *>          no error message related to LWORK or LIWORK is issued by
                    261: *>          XERBLA.
                    262: *> \endverbatim
                    263: *>
                    264: *> \param[out] RWORK
                    265: *> \verbatim
                    266: *>          RWORK is DOUBLE PRECISION array, dimension ( 8*N )
                    267: *>          Real workspace.
                    268: *> \endverbatim
                    269: *>
                    270: *> \param[out] IWORK
                    271: *> \verbatim
                    272: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    273: *>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
                    274: *> \endverbatim
                    275: *>
                    276: *> \param[in] LIWORK
                    277: *> \verbatim
                    278: *>          LIWORK is INTEGER
                    279: *>          The dimension of the array IWORK.
                    280: *>          If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
                    281: *>          LIWORK >= N+2.
                    282: *>
                    283: *>          If LIWORK = -1, then a workspace query is assumed; the
                    284: *>          routine only calculates the bound on the optimal size of the
                    285: *>          WORK array and the minimum size of the IWORK array, returns
                    286: *>          these values as the first entries of the WORK and IWORK
                    287: *>          arrays, and no error message related to LWORK or LIWORK is
                    288: *>          issued by XERBLA.
                    289: *> \endverbatim
                    290: *>
                    291: *> \param[out] BWORK
                    292: *> \verbatim
                    293: *>          BWORK is LOGICAL array, dimension (N)
                    294: *>          Not referenced if SORT = 'N'.
                    295: *> \endverbatim
                    296: *>
                    297: *> \param[out] INFO
                    298: *> \verbatim
                    299: *>          INFO is INTEGER
                    300: *>          = 0:  successful exit
                    301: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    302: *>          = 1,...,N:
                    303: *>                The QZ iteration failed.  (A,B) are not in Schur
                    304: *>                form, but ALPHA(j) and BETA(j) should be correct for
                    305: *>                j=INFO+1,...,N.
                    306: *>          > N:  =N+1: other than QZ iteration failed in ZHGEQZ
                    307: *>                =N+2: after reordering, roundoff changed values of
                    308: *>                      some complex eigenvalues so that leading
                    309: *>                      eigenvalues in the Generalized Schur form no
                    310: *>                      longer satisfy SELCTG=.TRUE.  This could also
                    311: *>                      be caused due to scaling.
                    312: *>                =N+3: reordering failed in ZTGSEN.
                    313: *> \endverbatim
                    314: *
                    315: *  Authors:
                    316: *  ========
                    317: *
1.14      bertrand  318: *> \author Univ. of Tennessee
                    319: *> \author Univ. of California Berkeley
                    320: *> \author Univ. of Colorado Denver
                    321: *> \author NAG Ltd.
1.8       bertrand  322: *
                    323: *> \ingroup complex16GEeigen
                    324: *
                    325: *  =====================================================================
1.1       bertrand  326:       SUBROUTINE ZGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
                    327:      $                   B, LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR,
                    328:      $                   LDVSR, RCONDE, RCONDV, WORK, LWORK, RWORK,
                    329:      $                   IWORK, LIWORK, BWORK, INFO )
                    330: *
1.19    ! bertrand  331: *  -- LAPACK driver routine --
1.1       bertrand  332: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    333: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    334: *
                    335: *     .. Scalar Arguments ..
                    336:       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
                    337:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
                    338:      $                   SDIM
                    339: *     ..
                    340: *     .. Array Arguments ..
                    341:       LOGICAL            BWORK( * )
                    342:       INTEGER            IWORK( * )
                    343:       DOUBLE PRECISION   RCONDE( 2 ), RCONDV( 2 ), RWORK( * )
                    344:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                    345:      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
                    346:      $                   WORK( * )
                    347: *     ..
                    348: *     .. Function Arguments ..
                    349:       LOGICAL            SELCTG
                    350:       EXTERNAL           SELCTG
                    351: *     ..
                    352: *
                    353: *  =====================================================================
                    354: *
                    355: *     .. Parameters ..
                    356:       DOUBLE PRECISION   ZERO, ONE
                    357:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    358:       COMPLEX*16         CZERO, CONE
                    359:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    360:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    361: *     ..
                    362: *     .. Local Scalars ..
                    363:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
                    364:      $                   LQUERY, WANTSB, WANTSE, WANTSN, WANTST, WANTSV
                    365:       INTEGER            I, ICOLS, IERR, IHI, IJOB, IJOBVL, IJOBVR,
                    366:      $                   ILEFT, ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK,
                    367:      $                   LIWMIN, LWRK, MAXWRK, MINWRK
                    368:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PL,
                    369:      $                   PR, SMLNUM
                    370: *     ..
                    371: *     .. Local Arrays ..
                    372:       DOUBLE PRECISION   DIF( 2 )
                    373: *     ..
                    374: *     .. External Subroutines ..
                    375:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
                    376:      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR,
                    377:      $                   ZUNMQR
                    378: *     ..
                    379: *     .. External Functions ..
                    380:       LOGICAL            LSAME
                    381:       INTEGER            ILAENV
                    382:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    383:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
                    384: *     ..
                    385: *     .. Intrinsic Functions ..
                    386:       INTRINSIC          MAX, SQRT
                    387: *     ..
                    388: *     .. Executable Statements ..
                    389: *
                    390: *     Decode the input arguments
                    391: *
                    392:       IF( LSAME( JOBVSL, 'N' ) ) THEN
                    393:          IJOBVL = 1
                    394:          ILVSL = .FALSE.
                    395:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
                    396:          IJOBVL = 2
                    397:          ILVSL = .TRUE.
                    398:       ELSE
                    399:          IJOBVL = -1
                    400:          ILVSL = .FALSE.
                    401:       END IF
                    402: *
                    403:       IF( LSAME( JOBVSR, 'N' ) ) THEN
                    404:          IJOBVR = 1
                    405:          ILVSR = .FALSE.
                    406:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
                    407:          IJOBVR = 2
                    408:          ILVSR = .TRUE.
                    409:       ELSE
                    410:          IJOBVR = -1
                    411:          ILVSR = .FALSE.
                    412:       END IF
                    413: *
                    414:       WANTST = LSAME( SORT, 'S' )
                    415:       WANTSN = LSAME( SENSE, 'N' )
                    416:       WANTSE = LSAME( SENSE, 'E' )
                    417:       WANTSV = LSAME( SENSE, 'V' )
                    418:       WANTSB = LSAME( SENSE, 'B' )
                    419:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    420:       IF( WANTSN ) THEN
                    421:          IJOB = 0
                    422:       ELSE IF( WANTSE ) THEN
                    423:          IJOB = 1
                    424:       ELSE IF( WANTSV ) THEN
                    425:          IJOB = 2
                    426:       ELSE IF( WANTSB ) THEN
                    427:          IJOB = 4
                    428:       END IF
                    429: *
                    430: *     Test the input arguments
                    431: *
                    432:       INFO = 0
                    433:       IF( IJOBVL.LE.0 ) THEN
                    434:          INFO = -1
                    435:       ELSE IF( IJOBVR.LE.0 ) THEN
                    436:          INFO = -2
                    437:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    438:          INFO = -3
                    439:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
                    440:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
                    441:          INFO = -5
                    442:       ELSE IF( N.LT.0 ) THEN
                    443:          INFO = -6
                    444:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    445:          INFO = -8
                    446:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    447:          INFO = -10
                    448:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
                    449:          INFO = -15
                    450:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
                    451:          INFO = -17
                    452:       END IF
                    453: *
                    454: *     Compute workspace
                    455: *      (Note: Comments in the code beginning "Workspace:" describe the
                    456: *       minimal amount of workspace needed at that point in the code,
                    457: *       as well as the preferred amount for good performance.
                    458: *       NB refers to the optimal block size for the immediately
                    459: *       following subroutine, as returned by ILAENV.)
                    460: *
                    461:       IF( INFO.EQ.0 ) THEN
                    462:          IF( N.GT.0) THEN
                    463:             MINWRK = 2*N
                    464:             MAXWRK = N*(1 + ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
                    465:             MAXWRK = MAX( MAXWRK, N*( 1 +
                    466:      $                    ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, -1 ) ) )
                    467:             IF( ILVSL ) THEN
                    468:                MAXWRK = MAX( MAXWRK, N*( 1 +
                    469:      $                       ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) ) )
                    470:             END IF
                    471:             LWRK = MAXWRK
                    472:             IF( IJOB.GE.1 )
                    473:      $         LWRK = MAX( LWRK, N*N/2 )
                    474:          ELSE
                    475:             MINWRK = 1
                    476:             MAXWRK = 1
                    477:             LWRK   = 1
                    478:          END IF
                    479:          WORK( 1 ) = LWRK
                    480:          IF( WANTSN .OR. N.EQ.0 ) THEN
                    481:             LIWMIN = 1
                    482:          ELSE
                    483:             LIWMIN = N + 2
                    484:          END IF
                    485:          IWORK( 1 ) = LIWMIN
                    486: *
                    487:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    488:             INFO = -21
                    489:          ELSE IF( LIWORK.LT.LIWMIN  .AND. .NOT.LQUERY) THEN
                    490:             INFO = -24
                    491:          END IF
                    492:       END IF
                    493: *
                    494:       IF( INFO.NE.0 ) THEN
                    495:          CALL XERBLA( 'ZGGESX', -INFO )
                    496:          RETURN
                    497:       ELSE IF (LQUERY) THEN
                    498:          RETURN
                    499:       END IF
                    500: *
                    501: *     Quick return if possible
                    502: *
                    503:       IF( N.EQ.0 ) THEN
                    504:          SDIM = 0
                    505:          RETURN
                    506:       END IF
                    507: *
                    508: *     Get machine constants
                    509: *
                    510:       EPS = DLAMCH( 'P' )
                    511:       SMLNUM = DLAMCH( 'S' )
                    512:       BIGNUM = ONE / SMLNUM
                    513:       CALL DLABAD( SMLNUM, BIGNUM )
                    514:       SMLNUM = SQRT( SMLNUM ) / EPS
                    515:       BIGNUM = ONE / SMLNUM
                    516: *
                    517: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    518: *
                    519:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
                    520:       ILASCL = .FALSE.
                    521:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    522:          ANRMTO = SMLNUM
                    523:          ILASCL = .TRUE.
                    524:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    525:          ANRMTO = BIGNUM
                    526:          ILASCL = .TRUE.
                    527:       END IF
                    528:       IF( ILASCL )
                    529:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
                    530: *
                    531: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    532: *
                    533:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
                    534:       ILBSCL = .FALSE.
                    535:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    536:          BNRMTO = SMLNUM
                    537:          ILBSCL = .TRUE.
                    538:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    539:          BNRMTO = BIGNUM
                    540:          ILBSCL = .TRUE.
                    541:       END IF
                    542:       IF( ILBSCL )
                    543:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
                    544: *
                    545: *     Permute the matrix to make it more nearly triangular
                    546: *     (Real Workspace: need 6*N)
                    547: *
                    548:       ILEFT = 1
                    549:       IRIGHT = N + 1
                    550:       IRWRK = IRIGHT + N
                    551:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
                    552:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
                    553: *
                    554: *     Reduce B to triangular form (QR decomposition of B)
                    555: *     (Complex Workspace: need N, prefer N*NB)
                    556: *
                    557:       IROWS = IHI + 1 - ILO
                    558:       ICOLS = N + 1 - ILO
                    559:       ITAU = 1
                    560:       IWRK = ITAU + IROWS
                    561:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    562:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    563: *
                    564: *     Apply the unitary transformation to matrix A
                    565: *     (Complex Workspace: need N, prefer N*NB)
                    566: *
                    567:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    568:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
                    569:      $             LWORK+1-IWRK, IERR )
                    570: *
                    571: *     Initialize VSL
                    572: *     (Complex Workspace: need N, prefer N*NB)
                    573: *
                    574:       IF( ILVSL ) THEN
                    575:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
                    576:          IF( IROWS.GT.1 ) THEN
                    577:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    578:      $                   VSL( ILO+1, ILO ), LDVSL )
                    579:          END IF
                    580:          CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
                    581:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
                    582:       END IF
                    583: *
                    584: *     Initialize VSR
                    585: *
                    586:       IF( ILVSR )
                    587:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
                    588: *
                    589: *     Reduce to generalized Hessenberg form
                    590: *     (Workspace: none needed)
                    591: *
                    592:       CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
                    593:      $             LDVSL, VSR, LDVSR, IERR )
                    594: *
                    595:       SDIM = 0
                    596: *
                    597: *     Perform QZ algorithm, computing Schur vectors if desired
                    598: *     (Complex Workspace: need N)
                    599: *     (Real Workspace:    need N)
                    600: *
                    601:       IWRK = ITAU
                    602:       CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
                    603:      $             ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWRK ),
                    604:      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
                    605:       IF( IERR.NE.0 ) THEN
                    606:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
                    607:             INFO = IERR
                    608:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
                    609:             INFO = IERR - N
                    610:          ELSE
                    611:             INFO = N + 1
                    612:          END IF
                    613:          GO TO 40
                    614:       END IF
                    615: *
                    616: *     Sort eigenvalues ALPHA/BETA and compute the reciprocal of
                    617: *     condition number(s)
                    618: *
                    619:       IF( WANTST ) THEN
                    620: *
                    621: *        Undo scaling on eigenvalues before SELCTGing
                    622: *
                    623:          IF( ILASCL )
                    624:      $      CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
                    625:          IF( ILBSCL )
                    626:      $      CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    627: *
                    628: *        Select eigenvalues
                    629: *
                    630:          DO 10 I = 1, N
                    631:             BWORK( I ) = SELCTG( ALPHA( I ), BETA( I ) )
                    632:    10    CONTINUE
                    633: *
                    634: *        Reorder eigenvalues, transform Generalized Schur vectors, and
                    635: *        compute reciprocal condition numbers
                    636: *        (Complex Workspace: If IJOB >= 1, need MAX(1, 2*SDIM*(N-SDIM))
                    637: *                            otherwise, need 1 )
                    638: *
                    639:          CALL ZTGSEN( IJOB, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
                    640:      $                ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PL, PR,
                    641:      $                DIF, WORK( IWRK ), LWORK-IWRK+1, IWORK, LIWORK,
                    642:      $                IERR )
                    643: *
                    644:          IF( IJOB.GE.1 )
                    645:      $      MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
                    646:          IF( IERR.EQ.-21 ) THEN
                    647: *
                    648: *            not enough complex workspace
                    649: *
                    650:             INFO = -21
                    651:          ELSE
                    652:             IF( IJOB.EQ.1 .OR. IJOB.EQ.4 ) THEN
                    653:                RCONDE( 1 ) = PL
                    654:                RCONDE( 2 ) = PR
                    655:             END IF
                    656:             IF( IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
                    657:                RCONDV( 1 ) = DIF( 1 )
                    658:                RCONDV( 2 ) = DIF( 2 )
                    659:             END IF
                    660:             IF( IERR.EQ.1 )
                    661:      $         INFO = N + 3
                    662:          END IF
                    663: *
                    664:       END IF
                    665: *
                    666: *     Apply permutation to VSL and VSR
                    667: *     (Workspace: none needed)
                    668: *
                    669:       IF( ILVSL )
                    670:      $   CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
                    671:      $                RWORK( IRIGHT ), N, VSL, LDVSL, IERR )
                    672: *
                    673:       IF( ILVSR )
                    674:      $   CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
                    675:      $                RWORK( IRIGHT ), N, VSR, LDVSR, IERR )
                    676: *
                    677: *     Undo scaling
                    678: *
                    679:       IF( ILASCL ) THEN
                    680:          CALL ZLASCL( 'U', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
                    681:          CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
                    682:       END IF
                    683: *
                    684:       IF( ILBSCL ) THEN
                    685:          CALL ZLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
                    686:          CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    687:       END IF
                    688: *
                    689:       IF( WANTST ) THEN
                    690: *
                    691: *        Check if reordering is correct
                    692: *
                    693:          LASTSL = .TRUE.
                    694:          SDIM = 0
                    695:          DO 30 I = 1, N
                    696:             CURSL = SELCTG( ALPHA( I ), BETA( I ) )
                    697:             IF( CURSL )
                    698:      $         SDIM = SDIM + 1
                    699:             IF( CURSL .AND. .NOT.LASTSL )
                    700:      $         INFO = N + 2
                    701:             LASTSL = CURSL
                    702:    30    CONTINUE
                    703: *
                    704:       END IF
                    705: *
                    706:    40 CONTINUE
                    707: *
                    708:       WORK( 1 ) = MAXWRK
                    709:       IWORK( 1 ) = LIWMIN
                    710: *
                    711:       RETURN
                    712: *
                    713: *     End of ZGGESX
                    714: *
                    715:       END

CVSweb interface <joel.bertrand@systella.fr>