Annotation of rpl/lapack/lapack/zggesx.f, revision 1.16

1.8       bertrand    1: *> \brief <b> ZGGESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download ZGGESX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggesx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggesx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggesx.f">
1.8       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
                     22: *                          B, LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR,
                     23: *                          LDVSR, RCONDE, RCONDV, WORK, LWORK, RWORK,
                     24: *                          IWORK, LIWORK, BWORK, INFO )
1.14      bertrand   25: *
1.8       bertrand   26: *       .. Scalar Arguments ..
                     27: *       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
                     28: *       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
                     29: *      $                   SDIM
                     30: *       ..
                     31: *       .. Array Arguments ..
                     32: *       LOGICAL            BWORK( * )
                     33: *       INTEGER            IWORK( * )
                     34: *       DOUBLE PRECISION   RCONDE( 2 ), RCONDV( 2 ), RWORK( * )
                     35: *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                     36: *      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
                     37: *      $                   WORK( * )
                     38: *       ..
                     39: *       .. Function Arguments ..
                     40: *       LOGICAL            SELCTG
                     41: *       EXTERNAL           SELCTG
                     42: *       ..
1.14      bertrand   43: *
1.8       bertrand   44: *
                     45: *> \par Purpose:
                     46: *  =============
                     47: *>
                     48: *> \verbatim
                     49: *>
                     50: *> ZGGESX computes for a pair of N-by-N complex nonsymmetric matrices
                     51: *> (A,B), the generalized eigenvalues, the complex Schur form (S,T),
                     52: *> and, optionally, the left and/or right matrices of Schur vectors (VSL
                     53: *> and VSR).  This gives the generalized Schur factorization
                     54: *>
                     55: *>      (A,B) = ( (VSL) S (VSR)**H, (VSL) T (VSR)**H )
                     56: *>
                     57: *> where (VSR)**H is the conjugate-transpose of VSR.
                     58: *>
                     59: *> Optionally, it also orders the eigenvalues so that a selected cluster
                     60: *> of eigenvalues appears in the leading diagonal blocks of the upper
                     61: *> triangular matrix S and the upper triangular matrix T; computes
                     62: *> a reciprocal condition number for the average of the selected
                     63: *> eigenvalues (RCONDE); and computes a reciprocal condition number for
                     64: *> the right and left deflating subspaces corresponding to the selected
                     65: *> eigenvalues (RCONDV). The leading columns of VSL and VSR then form
                     66: *> an orthonormal basis for the corresponding left and right eigenspaces
                     67: *> (deflating subspaces).
                     68: *>
                     69: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
                     70: *> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
                     71: *> usually represented as the pair (alpha,beta), as there is a
                     72: *> reasonable interpretation for beta=0 or for both being zero.
                     73: *>
                     74: *> A pair of matrices (S,T) is in generalized complex Schur form if T is
                     75: *> upper triangular with non-negative diagonal and S is upper
                     76: *> triangular.
                     77: *> \endverbatim
                     78: *
                     79: *  Arguments:
                     80: *  ==========
                     81: *
                     82: *> \param[in] JOBVSL
                     83: *> \verbatim
                     84: *>          JOBVSL is CHARACTER*1
                     85: *>          = 'N':  do not compute the left Schur vectors;
                     86: *>          = 'V':  compute the left Schur vectors.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] JOBVSR
                     90: *> \verbatim
                     91: *>          JOBVSR is CHARACTER*1
                     92: *>          = 'N':  do not compute the right Schur vectors;
                     93: *>          = 'V':  compute the right Schur vectors.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] SORT
                     97: *> \verbatim
                     98: *>          SORT is CHARACTER*1
                     99: *>          Specifies whether or not to order the eigenvalues on the
                    100: *>          diagonal of the generalized Schur form.
                    101: *>          = 'N':  Eigenvalues are not ordered;
                    102: *>          = 'S':  Eigenvalues are ordered (see SELCTG).
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] SELCTG
                    106: *> \verbatim
1.16    ! bertrand  107: *>          SELCTG is a LOGICAL FUNCTION of two COMPLEX*16 arguments
1.8       bertrand  108: *>          SELCTG must be declared EXTERNAL in the calling subroutine.
                    109: *>          If SORT = 'N', SELCTG is not referenced.
                    110: *>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
                    111: *>          to the top left of the Schur form.
                    112: *>          Note that a selected complex eigenvalue may no longer satisfy
                    113: *>          SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
                    114: *>          ordering may change the value of complex eigenvalues
                    115: *>          (especially if the eigenvalue is ill-conditioned), in this
                    116: *>          case INFO is set to N+3 see INFO below).
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[in] SENSE
                    120: *> \verbatim
                    121: *>          SENSE is CHARACTER*1
                    122: *>          Determines which reciprocal condition numbers are computed.
                    123: *>          = 'N' : None are computed;
                    124: *>          = 'E' : Computed for average of selected eigenvalues only;
                    125: *>          = 'V' : Computed for selected deflating subspaces only;
                    126: *>          = 'B' : Computed for both.
                    127: *>          If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[in] N
                    131: *> \verbatim
                    132: *>          N is INTEGER
                    133: *>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[in,out] A
                    137: *> \verbatim
                    138: *>          A is COMPLEX*16 array, dimension (LDA, N)
                    139: *>          On entry, the first of the pair of matrices.
                    140: *>          On exit, A has been overwritten by its generalized Schur
                    141: *>          form S.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[in] LDA
                    145: *> \verbatim
                    146: *>          LDA is INTEGER
                    147: *>          The leading dimension of A.  LDA >= max(1,N).
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[in,out] B
                    151: *> \verbatim
                    152: *>          B is COMPLEX*16 array, dimension (LDB, N)
                    153: *>          On entry, the second of the pair of matrices.
                    154: *>          On exit, B has been overwritten by its generalized Schur
                    155: *>          form T.
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[in] LDB
                    159: *> \verbatim
                    160: *>          LDB is INTEGER
                    161: *>          The leading dimension of B.  LDB >= max(1,N).
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[out] SDIM
                    165: *> \verbatim
                    166: *>          SDIM is INTEGER
                    167: *>          If SORT = 'N', SDIM = 0.
                    168: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                    169: *>          for which SELCTG is true.
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[out] ALPHA
                    173: *> \verbatim
                    174: *>          ALPHA is COMPLEX*16 array, dimension (N)
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[out] BETA
                    178: *> \verbatim
                    179: *>          BETA is COMPLEX*16 array, dimension (N)
                    180: *>          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
                    181: *>          generalized eigenvalues.  ALPHA(j) and BETA(j),j=1,...,N  are
                    182: *>          the diagonals of the complex Schur form (S,T).  BETA(j) will
                    183: *>          be non-negative real.
                    184: *>
                    185: *>          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
                    186: *>          underflow, and BETA(j) may even be zero.  Thus, the user
                    187: *>          should avoid naively computing the ratio alpha/beta.
                    188: *>          However, ALPHA will be always less than and usually
                    189: *>          comparable with norm(A) in magnitude, and BETA always less
                    190: *>          than and usually comparable with norm(B).
                    191: *> \endverbatim
                    192: *>
                    193: *> \param[out] VSL
                    194: *> \verbatim
                    195: *>          VSL is COMPLEX*16 array, dimension (LDVSL,N)
                    196: *>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
                    197: *>          Not referenced if JOBVSL = 'N'.
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[in] LDVSL
                    201: *> \verbatim
                    202: *>          LDVSL is INTEGER
                    203: *>          The leading dimension of the matrix VSL. LDVSL >=1, and
                    204: *>          if JOBVSL = 'V', LDVSL >= N.
                    205: *> \endverbatim
                    206: *>
                    207: *> \param[out] VSR
                    208: *> \verbatim
                    209: *>          VSR is COMPLEX*16 array, dimension (LDVSR,N)
                    210: *>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
                    211: *>          Not referenced if JOBVSR = 'N'.
                    212: *> \endverbatim
                    213: *>
                    214: *> \param[in] LDVSR
                    215: *> \verbatim
                    216: *>          LDVSR is INTEGER
                    217: *>          The leading dimension of the matrix VSR. LDVSR >= 1, and
                    218: *>          if JOBVSR = 'V', LDVSR >= N.
                    219: *> \endverbatim
                    220: *>
                    221: *> \param[out] RCONDE
                    222: *> \verbatim
                    223: *>          RCONDE is DOUBLE PRECISION array, dimension ( 2 )
                    224: *>          If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the
                    225: *>          reciprocal condition numbers for the average of the selected
                    226: *>          eigenvalues.
                    227: *>          Not referenced if SENSE = 'N' or 'V'.
                    228: *> \endverbatim
                    229: *>
                    230: *> \param[out] RCONDV
                    231: *> \verbatim
                    232: *>          RCONDV is DOUBLE PRECISION array, dimension ( 2 )
                    233: *>          If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the
                    234: *>          reciprocal condition number for the selected deflating
                    235: *>          subspaces.
                    236: *>          Not referenced if SENSE = 'N' or 'E'.
                    237: *> \endverbatim
                    238: *>
                    239: *> \param[out] WORK
                    240: *> \verbatim
                    241: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    242: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    243: *> \endverbatim
                    244: *>
                    245: *> \param[in] LWORK
                    246: *> \verbatim
                    247: *>          LWORK is INTEGER
                    248: *>          The dimension of the array WORK.
                    249: *>          If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B',
                    250: *>          LWORK >= MAX(1,2*N,2*SDIM*(N-SDIM)), else
                    251: *>          LWORK >= MAX(1,2*N).  Note that 2*SDIM*(N-SDIM) <= N*N/2.
                    252: *>          Note also that an error is only returned if
                    253: *>          LWORK < MAX(1,2*N), but if SENSE = 'E' or 'V' or 'B' this may
                    254: *>          not be large enough.
                    255: *>
                    256: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    257: *>          only calculates the bound on the optimal size of the WORK
                    258: *>          array and the minimum size of the IWORK array, returns these
                    259: *>          values as the first entries of the WORK and IWORK arrays, and
                    260: *>          no error message related to LWORK or LIWORK is issued by
                    261: *>          XERBLA.
                    262: *> \endverbatim
                    263: *>
                    264: *> \param[out] RWORK
                    265: *> \verbatim
                    266: *>          RWORK is DOUBLE PRECISION array, dimension ( 8*N )
                    267: *>          Real workspace.
                    268: *> \endverbatim
                    269: *>
                    270: *> \param[out] IWORK
                    271: *> \verbatim
                    272: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    273: *>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
                    274: *> \endverbatim
                    275: *>
                    276: *> \param[in] LIWORK
                    277: *> \verbatim
                    278: *>          LIWORK is INTEGER
                    279: *>          The dimension of the array IWORK.
                    280: *>          If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
                    281: *>          LIWORK >= N+2.
                    282: *>
                    283: *>          If LIWORK = -1, then a workspace query is assumed; the
                    284: *>          routine only calculates the bound on the optimal size of the
                    285: *>          WORK array and the minimum size of the IWORK array, returns
                    286: *>          these values as the first entries of the WORK and IWORK
                    287: *>          arrays, and no error message related to LWORK or LIWORK is
                    288: *>          issued by XERBLA.
                    289: *> \endverbatim
                    290: *>
                    291: *> \param[out] BWORK
                    292: *> \verbatim
                    293: *>          BWORK is LOGICAL array, dimension (N)
                    294: *>          Not referenced if SORT = 'N'.
                    295: *> \endverbatim
                    296: *>
                    297: *> \param[out] INFO
                    298: *> \verbatim
                    299: *>          INFO is INTEGER
                    300: *>          = 0:  successful exit
                    301: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    302: *>          = 1,...,N:
                    303: *>                The QZ iteration failed.  (A,B) are not in Schur
                    304: *>                form, but ALPHA(j) and BETA(j) should be correct for
                    305: *>                j=INFO+1,...,N.
                    306: *>          > N:  =N+1: other than QZ iteration failed in ZHGEQZ
                    307: *>                =N+2: after reordering, roundoff changed values of
                    308: *>                      some complex eigenvalues so that leading
                    309: *>                      eigenvalues in the Generalized Schur form no
                    310: *>                      longer satisfy SELCTG=.TRUE.  This could also
                    311: *>                      be caused due to scaling.
                    312: *>                =N+3: reordering failed in ZTGSEN.
                    313: *> \endverbatim
                    314: *
                    315: *  Authors:
                    316: *  ========
                    317: *
1.14      bertrand  318: *> \author Univ. of Tennessee
                    319: *> \author Univ. of California Berkeley
                    320: *> \author Univ. of Colorado Denver
                    321: *> \author NAG Ltd.
1.8       bertrand  322: *
1.16    ! bertrand  323: *> \date June 2017
1.8       bertrand  324: *
                    325: *> \ingroup complex16GEeigen
                    326: *
                    327: *  =====================================================================
1.1       bertrand  328:       SUBROUTINE ZGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
                    329:      $                   B, LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR,
                    330:      $                   LDVSR, RCONDE, RCONDV, WORK, LWORK, RWORK,
                    331:      $                   IWORK, LIWORK, BWORK, INFO )
                    332: *
1.16    ! bertrand  333: *  -- LAPACK driver routine (version 3.7.1) --
1.1       bertrand  334: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    335: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.16    ! bertrand  336: *     June 2017
1.1       bertrand  337: *
                    338: *     .. Scalar Arguments ..
                    339:       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
                    340:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
                    341:      $                   SDIM
                    342: *     ..
                    343: *     .. Array Arguments ..
                    344:       LOGICAL            BWORK( * )
                    345:       INTEGER            IWORK( * )
                    346:       DOUBLE PRECISION   RCONDE( 2 ), RCONDV( 2 ), RWORK( * )
                    347:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                    348:      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
                    349:      $                   WORK( * )
                    350: *     ..
                    351: *     .. Function Arguments ..
                    352:       LOGICAL            SELCTG
                    353:       EXTERNAL           SELCTG
                    354: *     ..
                    355: *
                    356: *  =====================================================================
                    357: *
                    358: *     .. Parameters ..
                    359:       DOUBLE PRECISION   ZERO, ONE
                    360:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    361:       COMPLEX*16         CZERO, CONE
                    362:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    363:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    364: *     ..
                    365: *     .. Local Scalars ..
                    366:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
                    367:      $                   LQUERY, WANTSB, WANTSE, WANTSN, WANTST, WANTSV
                    368:       INTEGER            I, ICOLS, IERR, IHI, IJOB, IJOBVL, IJOBVR,
                    369:      $                   ILEFT, ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK,
                    370:      $                   LIWMIN, LWRK, MAXWRK, MINWRK
                    371:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PL,
                    372:      $                   PR, SMLNUM
                    373: *     ..
                    374: *     .. Local Arrays ..
                    375:       DOUBLE PRECISION   DIF( 2 )
                    376: *     ..
                    377: *     .. External Subroutines ..
                    378:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
                    379:      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR,
                    380:      $                   ZUNMQR
                    381: *     ..
                    382: *     .. External Functions ..
                    383:       LOGICAL            LSAME
                    384:       INTEGER            ILAENV
                    385:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    386:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
                    387: *     ..
                    388: *     .. Intrinsic Functions ..
                    389:       INTRINSIC          MAX, SQRT
                    390: *     ..
                    391: *     .. Executable Statements ..
                    392: *
                    393: *     Decode the input arguments
                    394: *
                    395:       IF( LSAME( JOBVSL, 'N' ) ) THEN
                    396:          IJOBVL = 1
                    397:          ILVSL = .FALSE.
                    398:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
                    399:          IJOBVL = 2
                    400:          ILVSL = .TRUE.
                    401:       ELSE
                    402:          IJOBVL = -1
                    403:          ILVSL = .FALSE.
                    404:       END IF
                    405: *
                    406:       IF( LSAME( JOBVSR, 'N' ) ) THEN
                    407:          IJOBVR = 1
                    408:          ILVSR = .FALSE.
                    409:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
                    410:          IJOBVR = 2
                    411:          ILVSR = .TRUE.
                    412:       ELSE
                    413:          IJOBVR = -1
                    414:          ILVSR = .FALSE.
                    415:       END IF
                    416: *
                    417:       WANTST = LSAME( SORT, 'S' )
                    418:       WANTSN = LSAME( SENSE, 'N' )
                    419:       WANTSE = LSAME( SENSE, 'E' )
                    420:       WANTSV = LSAME( SENSE, 'V' )
                    421:       WANTSB = LSAME( SENSE, 'B' )
                    422:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    423:       IF( WANTSN ) THEN
                    424:          IJOB = 0
                    425:       ELSE IF( WANTSE ) THEN
                    426:          IJOB = 1
                    427:       ELSE IF( WANTSV ) THEN
                    428:          IJOB = 2
                    429:       ELSE IF( WANTSB ) THEN
                    430:          IJOB = 4
                    431:       END IF
                    432: *
                    433: *     Test the input arguments
                    434: *
                    435:       INFO = 0
                    436:       IF( IJOBVL.LE.0 ) THEN
                    437:          INFO = -1
                    438:       ELSE IF( IJOBVR.LE.0 ) THEN
                    439:          INFO = -2
                    440:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    441:          INFO = -3
                    442:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
                    443:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
                    444:          INFO = -5
                    445:       ELSE IF( N.LT.0 ) THEN
                    446:          INFO = -6
                    447:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    448:          INFO = -8
                    449:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    450:          INFO = -10
                    451:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
                    452:          INFO = -15
                    453:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
                    454:          INFO = -17
                    455:       END IF
                    456: *
                    457: *     Compute workspace
                    458: *      (Note: Comments in the code beginning "Workspace:" describe the
                    459: *       minimal amount of workspace needed at that point in the code,
                    460: *       as well as the preferred amount for good performance.
                    461: *       NB refers to the optimal block size for the immediately
                    462: *       following subroutine, as returned by ILAENV.)
                    463: *
                    464:       IF( INFO.EQ.0 ) THEN
                    465:          IF( N.GT.0) THEN
                    466:             MINWRK = 2*N
                    467:             MAXWRK = N*(1 + ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
                    468:             MAXWRK = MAX( MAXWRK, N*( 1 +
                    469:      $                    ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, -1 ) ) )
                    470:             IF( ILVSL ) THEN
                    471:                MAXWRK = MAX( MAXWRK, N*( 1 +
                    472:      $                       ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) ) )
                    473:             END IF
                    474:             LWRK = MAXWRK
                    475:             IF( IJOB.GE.1 )
                    476:      $         LWRK = MAX( LWRK, N*N/2 )
                    477:          ELSE
                    478:             MINWRK = 1
                    479:             MAXWRK = 1
                    480:             LWRK   = 1
                    481:          END IF
                    482:          WORK( 1 ) = LWRK
                    483:          IF( WANTSN .OR. N.EQ.0 ) THEN
                    484:             LIWMIN = 1
                    485:          ELSE
                    486:             LIWMIN = N + 2
                    487:          END IF
                    488:          IWORK( 1 ) = LIWMIN
                    489: *
                    490:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    491:             INFO = -21
                    492:          ELSE IF( LIWORK.LT.LIWMIN  .AND. .NOT.LQUERY) THEN
                    493:             INFO = -24
                    494:          END IF
                    495:       END IF
                    496: *
                    497:       IF( INFO.NE.0 ) THEN
                    498:          CALL XERBLA( 'ZGGESX', -INFO )
                    499:          RETURN
                    500:       ELSE IF (LQUERY) THEN
                    501:          RETURN
                    502:       END IF
                    503: *
                    504: *     Quick return if possible
                    505: *
                    506:       IF( N.EQ.0 ) THEN
                    507:          SDIM = 0
                    508:          RETURN
                    509:       END IF
                    510: *
                    511: *     Get machine constants
                    512: *
                    513:       EPS = DLAMCH( 'P' )
                    514:       SMLNUM = DLAMCH( 'S' )
                    515:       BIGNUM = ONE / SMLNUM
                    516:       CALL DLABAD( SMLNUM, BIGNUM )
                    517:       SMLNUM = SQRT( SMLNUM ) / EPS
                    518:       BIGNUM = ONE / SMLNUM
                    519: *
                    520: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    521: *
                    522:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
                    523:       ILASCL = .FALSE.
                    524:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    525:          ANRMTO = SMLNUM
                    526:          ILASCL = .TRUE.
                    527:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    528:          ANRMTO = BIGNUM
                    529:          ILASCL = .TRUE.
                    530:       END IF
                    531:       IF( ILASCL )
                    532:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
                    533: *
                    534: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    535: *
                    536:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
                    537:       ILBSCL = .FALSE.
                    538:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    539:          BNRMTO = SMLNUM
                    540:          ILBSCL = .TRUE.
                    541:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    542:          BNRMTO = BIGNUM
                    543:          ILBSCL = .TRUE.
                    544:       END IF
                    545:       IF( ILBSCL )
                    546:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
                    547: *
                    548: *     Permute the matrix to make it more nearly triangular
                    549: *     (Real Workspace: need 6*N)
                    550: *
                    551:       ILEFT = 1
                    552:       IRIGHT = N + 1
                    553:       IRWRK = IRIGHT + N
                    554:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
                    555:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
                    556: *
                    557: *     Reduce B to triangular form (QR decomposition of B)
                    558: *     (Complex Workspace: need N, prefer N*NB)
                    559: *
                    560:       IROWS = IHI + 1 - ILO
                    561:       ICOLS = N + 1 - ILO
                    562:       ITAU = 1
                    563:       IWRK = ITAU + IROWS
                    564:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    565:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    566: *
                    567: *     Apply the unitary transformation to matrix A
                    568: *     (Complex Workspace: need N, prefer N*NB)
                    569: *
                    570:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    571:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
                    572:      $             LWORK+1-IWRK, IERR )
                    573: *
                    574: *     Initialize VSL
                    575: *     (Complex Workspace: need N, prefer N*NB)
                    576: *
                    577:       IF( ILVSL ) THEN
                    578:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
                    579:          IF( IROWS.GT.1 ) THEN
                    580:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    581:      $                   VSL( ILO+1, ILO ), LDVSL )
                    582:          END IF
                    583:          CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
                    584:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
                    585:       END IF
                    586: *
                    587: *     Initialize VSR
                    588: *
                    589:       IF( ILVSR )
                    590:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
                    591: *
                    592: *     Reduce to generalized Hessenberg form
                    593: *     (Workspace: none needed)
                    594: *
                    595:       CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
                    596:      $             LDVSL, VSR, LDVSR, IERR )
                    597: *
                    598:       SDIM = 0
                    599: *
                    600: *     Perform QZ algorithm, computing Schur vectors if desired
                    601: *     (Complex Workspace: need N)
                    602: *     (Real Workspace:    need N)
                    603: *
                    604:       IWRK = ITAU
                    605:       CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
                    606:      $             ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWRK ),
                    607:      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
                    608:       IF( IERR.NE.0 ) THEN
                    609:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
                    610:             INFO = IERR
                    611:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
                    612:             INFO = IERR - N
                    613:          ELSE
                    614:             INFO = N + 1
                    615:          END IF
                    616:          GO TO 40
                    617:       END IF
                    618: *
                    619: *     Sort eigenvalues ALPHA/BETA and compute the reciprocal of
                    620: *     condition number(s)
                    621: *
                    622:       IF( WANTST ) THEN
                    623: *
                    624: *        Undo scaling on eigenvalues before SELCTGing
                    625: *
                    626:          IF( ILASCL )
                    627:      $      CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
                    628:          IF( ILBSCL )
                    629:      $      CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    630: *
                    631: *        Select eigenvalues
                    632: *
                    633:          DO 10 I = 1, N
                    634:             BWORK( I ) = SELCTG( ALPHA( I ), BETA( I ) )
                    635:    10    CONTINUE
                    636: *
                    637: *        Reorder eigenvalues, transform Generalized Schur vectors, and
                    638: *        compute reciprocal condition numbers
                    639: *        (Complex Workspace: If IJOB >= 1, need MAX(1, 2*SDIM*(N-SDIM))
                    640: *                            otherwise, need 1 )
                    641: *
                    642:          CALL ZTGSEN( IJOB, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
                    643:      $                ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PL, PR,
                    644:      $                DIF, WORK( IWRK ), LWORK-IWRK+1, IWORK, LIWORK,
                    645:      $                IERR )
                    646: *
                    647:          IF( IJOB.GE.1 )
                    648:      $      MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
                    649:          IF( IERR.EQ.-21 ) THEN
                    650: *
                    651: *            not enough complex workspace
                    652: *
                    653:             INFO = -21
                    654:          ELSE
                    655:             IF( IJOB.EQ.1 .OR. IJOB.EQ.4 ) THEN
                    656:                RCONDE( 1 ) = PL
                    657:                RCONDE( 2 ) = PR
                    658:             END IF
                    659:             IF( IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
                    660:                RCONDV( 1 ) = DIF( 1 )
                    661:                RCONDV( 2 ) = DIF( 2 )
                    662:             END IF
                    663:             IF( IERR.EQ.1 )
                    664:      $         INFO = N + 3
                    665:          END IF
                    666: *
                    667:       END IF
                    668: *
                    669: *     Apply permutation to VSL and VSR
                    670: *     (Workspace: none needed)
                    671: *
                    672:       IF( ILVSL )
                    673:      $   CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
                    674:      $                RWORK( IRIGHT ), N, VSL, LDVSL, IERR )
                    675: *
                    676:       IF( ILVSR )
                    677:      $   CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
                    678:      $                RWORK( IRIGHT ), N, VSR, LDVSR, IERR )
                    679: *
                    680: *     Undo scaling
                    681: *
                    682:       IF( ILASCL ) THEN
                    683:          CALL ZLASCL( 'U', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
                    684:          CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
                    685:       END IF
                    686: *
                    687:       IF( ILBSCL ) THEN
                    688:          CALL ZLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
                    689:          CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    690:       END IF
                    691: *
                    692:       IF( WANTST ) THEN
                    693: *
                    694: *        Check if reordering is correct
                    695: *
                    696:          LASTSL = .TRUE.
                    697:          SDIM = 0
                    698:          DO 30 I = 1, N
                    699:             CURSL = SELCTG( ALPHA( I ), BETA( I ) )
                    700:             IF( CURSL )
                    701:      $         SDIM = SDIM + 1
                    702:             IF( CURSL .AND. .NOT.LASTSL )
                    703:      $         INFO = N + 2
                    704:             LASTSL = CURSL
                    705:    30    CONTINUE
                    706: *
                    707:       END IF
                    708: *
                    709:    40 CONTINUE
                    710: *
                    711:       WORK( 1 ) = MAXWRK
                    712:       IWORK( 1 ) = LIWMIN
                    713: *
                    714:       RETURN
                    715: *
                    716: *     End of ZGGESX
                    717: *
                    718:       END

CVSweb interface <joel.bertrand@systella.fr>