Annotation of rpl/lapack/lapack/zggesx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
        !             2:      $                   B, LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR,
        !             3:      $                   LDVSR, RCONDE, RCONDV, WORK, LWORK, RWORK,
        !             4:      $                   IWORK, LIWORK, BWORK, INFO )
        !             5: *
        !             6: *  -- LAPACK driver routine (version 3.2) --
        !             7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             9: *     November 2006
        !            10: *
        !            11: *     .. Scalar Arguments ..
        !            12:       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
        !            13:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
        !            14:      $                   SDIM
        !            15: *     ..
        !            16: *     .. Array Arguments ..
        !            17:       LOGICAL            BWORK( * )
        !            18:       INTEGER            IWORK( * )
        !            19:       DOUBLE PRECISION   RCONDE( 2 ), RCONDV( 2 ), RWORK( * )
        !            20:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
        !            21:      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
        !            22:      $                   WORK( * )
        !            23: *     ..
        !            24: *     .. Function Arguments ..
        !            25:       LOGICAL            SELCTG
        !            26:       EXTERNAL           SELCTG
        !            27: *     ..
        !            28: *
        !            29: *  Purpose
        !            30: *  =======
        !            31: *
        !            32: *  ZGGESX computes for a pair of N-by-N complex nonsymmetric matrices
        !            33: *  (A,B), the generalized eigenvalues, the complex Schur form (S,T),
        !            34: *  and, optionally, the left and/or right matrices of Schur vectors (VSL
        !            35: *  and VSR).  This gives the generalized Schur factorization
        !            36: *
        !            37: *       (A,B) = ( (VSL) S (VSR)**H, (VSL) T (VSR)**H )
        !            38: *
        !            39: *  where (VSR)**H is the conjugate-transpose of VSR.
        !            40: *
        !            41: *  Optionally, it also orders the eigenvalues so that a selected cluster
        !            42: *  of eigenvalues appears in the leading diagonal blocks of the upper
        !            43: *  triangular matrix S and the upper triangular matrix T; computes
        !            44: *  a reciprocal condition number for the average of the selected
        !            45: *  eigenvalues (RCONDE); and computes a reciprocal condition number for
        !            46: *  the right and left deflating subspaces corresponding to the selected
        !            47: *  eigenvalues (RCONDV). The leading columns of VSL and VSR then form
        !            48: *  an orthonormal basis for the corresponding left and right eigenspaces
        !            49: *  (deflating subspaces).
        !            50: *
        !            51: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
        !            52: *  or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
        !            53: *  usually represented as the pair (alpha,beta), as there is a
        !            54: *  reasonable interpretation for beta=0 or for both being zero.
        !            55: *
        !            56: *  A pair of matrices (S,T) is in generalized complex Schur form if T is
        !            57: *  upper triangular with non-negative diagonal and S is upper
        !            58: *  triangular.
        !            59: *
        !            60: *  Arguments
        !            61: *  =========
        !            62: *
        !            63: *  JOBVSL  (input) CHARACTER*1
        !            64: *          = 'N':  do not compute the left Schur vectors;
        !            65: *          = 'V':  compute the left Schur vectors.
        !            66: *
        !            67: *  JOBVSR  (input) CHARACTER*1
        !            68: *          = 'N':  do not compute the right Schur vectors;
        !            69: *          = 'V':  compute the right Schur vectors.
        !            70: *
        !            71: *  SORT    (input) CHARACTER*1
        !            72: *          Specifies whether or not to order the eigenvalues on the
        !            73: *          diagonal of the generalized Schur form.
        !            74: *          = 'N':  Eigenvalues are not ordered;
        !            75: *          = 'S':  Eigenvalues are ordered (see SELCTG).
        !            76: *
        !            77: *  SELCTG  (external procedure) LOGICAL FUNCTION of two COMPLEX*16 arguments
        !            78: *          SELCTG must be declared EXTERNAL in the calling subroutine.
        !            79: *          If SORT = 'N', SELCTG is not referenced.
        !            80: *          If SORT = 'S', SELCTG is used to select eigenvalues to sort
        !            81: *          to the top left of the Schur form.
        !            82: *          Note that a selected complex eigenvalue may no longer satisfy
        !            83: *          SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
        !            84: *          ordering may change the value of complex eigenvalues
        !            85: *          (especially if the eigenvalue is ill-conditioned), in this
        !            86: *          case INFO is set to N+3 see INFO below).
        !            87: *
        !            88: *  SENSE   (input) CHARACTER*1
        !            89: *          Determines which reciprocal condition numbers are computed.
        !            90: *          = 'N' : None are computed;
        !            91: *          = 'E' : Computed for average of selected eigenvalues only;
        !            92: *          = 'V' : Computed for selected deflating subspaces only;
        !            93: *          = 'B' : Computed for both.
        !            94: *          If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
        !            95: *
        !            96: *  N       (input) INTEGER
        !            97: *          The order of the matrices A, B, VSL, and VSR.  N >= 0.
        !            98: *
        !            99: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
        !           100: *          On entry, the first of the pair of matrices.
        !           101: *          On exit, A has been overwritten by its generalized Schur
        !           102: *          form S.
        !           103: *
        !           104: *  LDA     (input) INTEGER
        !           105: *          The leading dimension of A.  LDA >= max(1,N).
        !           106: *
        !           107: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
        !           108: *          On entry, the second of the pair of matrices.
        !           109: *          On exit, B has been overwritten by its generalized Schur
        !           110: *          form T.
        !           111: *
        !           112: *  LDB     (input) INTEGER
        !           113: *          The leading dimension of B.  LDB >= max(1,N).
        !           114: *
        !           115: *  SDIM    (output) INTEGER
        !           116: *          If SORT = 'N', SDIM = 0.
        !           117: *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
        !           118: *          for which SELCTG is true.
        !           119: *
        !           120: *  ALPHA   (output) COMPLEX*16 array, dimension (N)
        !           121: *  BETA    (output) COMPLEX*16 array, dimension (N)
        !           122: *          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
        !           123: *          generalized eigenvalues.  ALPHA(j) and BETA(j),j=1,...,N  are
        !           124: *          the diagonals of the complex Schur form (S,T).  BETA(j) will
        !           125: *          be non-negative real.
        !           126: *
        !           127: *          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
        !           128: *          underflow, and BETA(j) may even be zero.  Thus, the user
        !           129: *          should avoid naively computing the ratio alpha/beta.
        !           130: *          However, ALPHA will be always less than and usually
        !           131: *          comparable with norm(A) in magnitude, and BETA always less
        !           132: *          than and usually comparable with norm(B).
        !           133: *
        !           134: *  VSL     (output) COMPLEX*16 array, dimension (LDVSL,N)
        !           135: *          If JOBVSL = 'V', VSL will contain the left Schur vectors.
        !           136: *          Not referenced if JOBVSL = 'N'.
        !           137: *
        !           138: *  LDVSL   (input) INTEGER
        !           139: *          The leading dimension of the matrix VSL. LDVSL >=1, and
        !           140: *          if JOBVSL = 'V', LDVSL >= N.
        !           141: *
        !           142: *  VSR     (output) COMPLEX*16 array, dimension (LDVSR,N)
        !           143: *          If JOBVSR = 'V', VSR will contain the right Schur vectors.
        !           144: *          Not referenced if JOBVSR = 'N'.
        !           145: *
        !           146: *  LDVSR   (input) INTEGER
        !           147: *          The leading dimension of the matrix VSR. LDVSR >= 1, and
        !           148: *          if JOBVSR = 'V', LDVSR >= N.
        !           149: *
        !           150: *  RCONDE  (output) DOUBLE PRECISION array, dimension ( 2 )
        !           151: *          If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the
        !           152: *          reciprocal condition numbers for the average of the selected
        !           153: *          eigenvalues.
        !           154: *          Not referenced if SENSE = 'N' or 'V'.
        !           155: *
        !           156: *  RCONDV  (output) DOUBLE PRECISION array, dimension ( 2 )
        !           157: *          If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the
        !           158: *          reciprocal condition number for the selected deflating
        !           159: *          subspaces.
        !           160: *          Not referenced if SENSE = 'N' or 'E'.
        !           161: *
        !           162: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           163: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           164: *
        !           165: *  LWORK   (input) INTEGER
        !           166: *          The dimension of the array WORK.
        !           167: *          If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B',
        !           168: *          LWORK >= MAX(1,2*N,2*SDIM*(N-SDIM)), else
        !           169: *          LWORK >= MAX(1,2*N).  Note that 2*SDIM*(N-SDIM) <= N*N/2.
        !           170: *          Note also that an error is only returned if
        !           171: *          LWORK < MAX(1,2*N), but if SENSE = 'E' or 'V' or 'B' this may
        !           172: *          not be large enough.
        !           173: *
        !           174: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           175: *          only calculates the bound on the optimal size of the WORK
        !           176: *          array and the minimum size of the IWORK array, returns these
        !           177: *          values as the first entries of the WORK and IWORK arrays, and
        !           178: *          no error message related to LWORK or LIWORK is issued by
        !           179: *          XERBLA.
        !           180: *
        !           181: *  RWORK   (workspace) DOUBLE PRECISION array, dimension ( 8*N )
        !           182: *          Real workspace.
        !           183: *
        !           184: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
        !           185: *          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
        !           186: *
        !           187: *  LIWORK  (input) INTEGER
        !           188: *          The dimension of the array IWORK.
        !           189: *          If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
        !           190: *          LIWORK >= N+2.
        !           191: *
        !           192: *          If LIWORK = -1, then a workspace query is assumed; the
        !           193: *          routine only calculates the bound on the optimal size of the
        !           194: *          WORK array and the minimum size of the IWORK array, returns
        !           195: *          these values as the first entries of the WORK and IWORK
        !           196: *          arrays, and no error message related to LWORK or LIWORK is
        !           197: *          issued by XERBLA.
        !           198: *
        !           199: *  BWORK   (workspace) LOGICAL array, dimension (N)
        !           200: *          Not referenced if SORT = 'N'.
        !           201: *
        !           202: *  INFO    (output) INTEGER
        !           203: *          = 0:  successful exit
        !           204: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           205: *          = 1,...,N:
        !           206: *                The QZ iteration failed.  (A,B) are not in Schur
        !           207: *                form, but ALPHA(j) and BETA(j) should be correct for
        !           208: *                j=INFO+1,...,N.
        !           209: *          > N:  =N+1: other than QZ iteration failed in ZHGEQZ
        !           210: *                =N+2: after reordering, roundoff changed values of
        !           211: *                      some complex eigenvalues so that leading
        !           212: *                      eigenvalues in the Generalized Schur form no
        !           213: *                      longer satisfy SELCTG=.TRUE.  This could also
        !           214: *                      be caused due to scaling.
        !           215: *                =N+3: reordering failed in ZTGSEN.
        !           216: *
        !           217: *  =====================================================================
        !           218: *
        !           219: *     .. Parameters ..
        !           220:       DOUBLE PRECISION   ZERO, ONE
        !           221:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           222:       COMPLEX*16         CZERO, CONE
        !           223:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
        !           224:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
        !           225: *     ..
        !           226: *     .. Local Scalars ..
        !           227:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
        !           228:      $                   LQUERY, WANTSB, WANTSE, WANTSN, WANTST, WANTSV
        !           229:       INTEGER            I, ICOLS, IERR, IHI, IJOB, IJOBVL, IJOBVR,
        !           230:      $                   ILEFT, ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK,
        !           231:      $                   LIWMIN, LWRK, MAXWRK, MINWRK
        !           232:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PL,
        !           233:      $                   PR, SMLNUM
        !           234: *     ..
        !           235: *     .. Local Arrays ..
        !           236:       DOUBLE PRECISION   DIF( 2 )
        !           237: *     ..
        !           238: *     .. External Subroutines ..
        !           239:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
        !           240:      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR,
        !           241:      $                   ZUNMQR
        !           242: *     ..
        !           243: *     .. External Functions ..
        !           244:       LOGICAL            LSAME
        !           245:       INTEGER            ILAENV
        !           246:       DOUBLE PRECISION   DLAMCH, ZLANGE
        !           247:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
        !           248: *     ..
        !           249: *     .. Intrinsic Functions ..
        !           250:       INTRINSIC          MAX, SQRT
        !           251: *     ..
        !           252: *     .. Executable Statements ..
        !           253: *
        !           254: *     Decode the input arguments
        !           255: *
        !           256:       IF( LSAME( JOBVSL, 'N' ) ) THEN
        !           257:          IJOBVL = 1
        !           258:          ILVSL = .FALSE.
        !           259:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
        !           260:          IJOBVL = 2
        !           261:          ILVSL = .TRUE.
        !           262:       ELSE
        !           263:          IJOBVL = -1
        !           264:          ILVSL = .FALSE.
        !           265:       END IF
        !           266: *
        !           267:       IF( LSAME( JOBVSR, 'N' ) ) THEN
        !           268:          IJOBVR = 1
        !           269:          ILVSR = .FALSE.
        !           270:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
        !           271:          IJOBVR = 2
        !           272:          ILVSR = .TRUE.
        !           273:       ELSE
        !           274:          IJOBVR = -1
        !           275:          ILVSR = .FALSE.
        !           276:       END IF
        !           277: *
        !           278:       WANTST = LSAME( SORT, 'S' )
        !           279:       WANTSN = LSAME( SENSE, 'N' )
        !           280:       WANTSE = LSAME( SENSE, 'E' )
        !           281:       WANTSV = LSAME( SENSE, 'V' )
        !           282:       WANTSB = LSAME( SENSE, 'B' )
        !           283:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
        !           284:       IF( WANTSN ) THEN
        !           285:          IJOB = 0
        !           286:       ELSE IF( WANTSE ) THEN
        !           287:          IJOB = 1
        !           288:       ELSE IF( WANTSV ) THEN
        !           289:          IJOB = 2
        !           290:       ELSE IF( WANTSB ) THEN
        !           291:          IJOB = 4
        !           292:       END IF
        !           293: *
        !           294: *     Test the input arguments
        !           295: *
        !           296:       INFO = 0
        !           297:       IF( IJOBVL.LE.0 ) THEN
        !           298:          INFO = -1
        !           299:       ELSE IF( IJOBVR.LE.0 ) THEN
        !           300:          INFO = -2
        !           301:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
        !           302:          INFO = -3
        !           303:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
        !           304:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
        !           305:          INFO = -5
        !           306:       ELSE IF( N.LT.0 ) THEN
        !           307:          INFO = -6
        !           308:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           309:          INFO = -8
        !           310:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           311:          INFO = -10
        !           312:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
        !           313:          INFO = -15
        !           314:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
        !           315:          INFO = -17
        !           316:       END IF
        !           317: *
        !           318: *     Compute workspace
        !           319: *      (Note: Comments in the code beginning "Workspace:" describe the
        !           320: *       minimal amount of workspace needed at that point in the code,
        !           321: *       as well as the preferred amount for good performance.
        !           322: *       NB refers to the optimal block size for the immediately
        !           323: *       following subroutine, as returned by ILAENV.)
        !           324: *
        !           325:       IF( INFO.EQ.0 ) THEN
        !           326:          IF( N.GT.0) THEN
        !           327:             MINWRK = 2*N
        !           328:             MAXWRK = N*(1 + ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
        !           329:             MAXWRK = MAX( MAXWRK, N*( 1 +
        !           330:      $                    ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, -1 ) ) )
        !           331:             IF( ILVSL ) THEN
        !           332:                MAXWRK = MAX( MAXWRK, N*( 1 +
        !           333:      $                       ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) ) )
        !           334:             END IF
        !           335:             LWRK = MAXWRK
        !           336:             IF( IJOB.GE.1 )
        !           337:      $         LWRK = MAX( LWRK, N*N/2 )
        !           338:          ELSE
        !           339:             MINWRK = 1
        !           340:             MAXWRK = 1
        !           341:             LWRK   = 1
        !           342:          END IF
        !           343:          WORK( 1 ) = LWRK
        !           344:          IF( WANTSN .OR. N.EQ.0 ) THEN
        !           345:             LIWMIN = 1
        !           346:          ELSE
        !           347:             LIWMIN = N + 2
        !           348:          END IF
        !           349:          IWORK( 1 ) = LIWMIN
        !           350: *
        !           351:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
        !           352:             INFO = -21
        !           353:          ELSE IF( LIWORK.LT.LIWMIN  .AND. .NOT.LQUERY) THEN
        !           354:             INFO = -24
        !           355:          END IF
        !           356:       END IF
        !           357: *
        !           358:       IF( INFO.NE.0 ) THEN
        !           359:          CALL XERBLA( 'ZGGESX', -INFO )
        !           360:          RETURN
        !           361:       ELSE IF (LQUERY) THEN
        !           362:          RETURN
        !           363:       END IF
        !           364: *
        !           365: *     Quick return if possible
        !           366: *
        !           367:       IF( N.EQ.0 ) THEN
        !           368:          SDIM = 0
        !           369:          RETURN
        !           370:       END IF
        !           371: *
        !           372: *     Get machine constants
        !           373: *
        !           374:       EPS = DLAMCH( 'P' )
        !           375:       SMLNUM = DLAMCH( 'S' )
        !           376:       BIGNUM = ONE / SMLNUM
        !           377:       CALL DLABAD( SMLNUM, BIGNUM )
        !           378:       SMLNUM = SQRT( SMLNUM ) / EPS
        !           379:       BIGNUM = ONE / SMLNUM
        !           380: *
        !           381: *     Scale A if max element outside range [SMLNUM,BIGNUM]
        !           382: *
        !           383:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
        !           384:       ILASCL = .FALSE.
        !           385:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           386:          ANRMTO = SMLNUM
        !           387:          ILASCL = .TRUE.
        !           388:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           389:          ANRMTO = BIGNUM
        !           390:          ILASCL = .TRUE.
        !           391:       END IF
        !           392:       IF( ILASCL )
        !           393:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
        !           394: *
        !           395: *     Scale B if max element outside range [SMLNUM,BIGNUM]
        !           396: *
        !           397:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
        !           398:       ILBSCL = .FALSE.
        !           399:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
        !           400:          BNRMTO = SMLNUM
        !           401:          ILBSCL = .TRUE.
        !           402:       ELSE IF( BNRM.GT.BIGNUM ) THEN
        !           403:          BNRMTO = BIGNUM
        !           404:          ILBSCL = .TRUE.
        !           405:       END IF
        !           406:       IF( ILBSCL )
        !           407:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
        !           408: *
        !           409: *     Permute the matrix to make it more nearly triangular
        !           410: *     (Real Workspace: need 6*N)
        !           411: *
        !           412:       ILEFT = 1
        !           413:       IRIGHT = N + 1
        !           414:       IRWRK = IRIGHT + N
        !           415:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
        !           416:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
        !           417: *
        !           418: *     Reduce B to triangular form (QR decomposition of B)
        !           419: *     (Complex Workspace: need N, prefer N*NB)
        !           420: *
        !           421:       IROWS = IHI + 1 - ILO
        !           422:       ICOLS = N + 1 - ILO
        !           423:       ITAU = 1
        !           424:       IWRK = ITAU + IROWS
        !           425:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
        !           426:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           427: *
        !           428: *     Apply the unitary transformation to matrix A
        !           429: *     (Complex Workspace: need N, prefer N*NB)
        !           430: *
        !           431:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
        !           432:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
        !           433:      $             LWORK+1-IWRK, IERR )
        !           434: *
        !           435: *     Initialize VSL
        !           436: *     (Complex Workspace: need N, prefer N*NB)
        !           437: *
        !           438:       IF( ILVSL ) THEN
        !           439:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
        !           440:          IF( IROWS.GT.1 ) THEN
        !           441:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
        !           442:      $                   VSL( ILO+1, ILO ), LDVSL )
        !           443:          END IF
        !           444:          CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
        !           445:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           446:       END IF
        !           447: *
        !           448: *     Initialize VSR
        !           449: *
        !           450:       IF( ILVSR )
        !           451:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
        !           452: *
        !           453: *     Reduce to generalized Hessenberg form
        !           454: *     (Workspace: none needed)
        !           455: *
        !           456:       CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
        !           457:      $             LDVSL, VSR, LDVSR, IERR )
        !           458: *
        !           459:       SDIM = 0
        !           460: *
        !           461: *     Perform QZ algorithm, computing Schur vectors if desired
        !           462: *     (Complex Workspace: need N)
        !           463: *     (Real Workspace:    need N)
        !           464: *
        !           465:       IWRK = ITAU
        !           466:       CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
        !           467:      $             ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWRK ),
        !           468:      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
        !           469:       IF( IERR.NE.0 ) THEN
        !           470:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
        !           471:             INFO = IERR
        !           472:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
        !           473:             INFO = IERR - N
        !           474:          ELSE
        !           475:             INFO = N + 1
        !           476:          END IF
        !           477:          GO TO 40
        !           478:       END IF
        !           479: *
        !           480: *     Sort eigenvalues ALPHA/BETA and compute the reciprocal of
        !           481: *     condition number(s)
        !           482: *
        !           483:       IF( WANTST ) THEN
        !           484: *
        !           485: *        Undo scaling on eigenvalues before SELCTGing
        !           486: *
        !           487:          IF( ILASCL )
        !           488:      $      CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
        !           489:          IF( ILBSCL )
        !           490:      $      CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
        !           491: *
        !           492: *        Select eigenvalues
        !           493: *
        !           494:          DO 10 I = 1, N
        !           495:             BWORK( I ) = SELCTG( ALPHA( I ), BETA( I ) )
        !           496:    10    CONTINUE
        !           497: *
        !           498: *        Reorder eigenvalues, transform Generalized Schur vectors, and
        !           499: *        compute reciprocal condition numbers
        !           500: *        (Complex Workspace: If IJOB >= 1, need MAX(1, 2*SDIM*(N-SDIM))
        !           501: *                            otherwise, need 1 )
        !           502: *
        !           503:          CALL ZTGSEN( IJOB, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
        !           504:      $                ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PL, PR,
        !           505:      $                DIF, WORK( IWRK ), LWORK-IWRK+1, IWORK, LIWORK,
        !           506:      $                IERR )
        !           507: *
        !           508:          IF( IJOB.GE.1 )
        !           509:      $      MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
        !           510:          IF( IERR.EQ.-21 ) THEN
        !           511: *
        !           512: *            not enough complex workspace
        !           513: *
        !           514:             INFO = -21
        !           515:          ELSE
        !           516:             IF( IJOB.EQ.1 .OR. IJOB.EQ.4 ) THEN
        !           517:                RCONDE( 1 ) = PL
        !           518:                RCONDE( 2 ) = PR
        !           519:             END IF
        !           520:             IF( IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
        !           521:                RCONDV( 1 ) = DIF( 1 )
        !           522:                RCONDV( 2 ) = DIF( 2 )
        !           523:             END IF
        !           524:             IF( IERR.EQ.1 )
        !           525:      $         INFO = N + 3
        !           526:          END IF
        !           527: *
        !           528:       END IF
        !           529: *
        !           530: *     Apply permutation to VSL and VSR
        !           531: *     (Workspace: none needed)
        !           532: *
        !           533:       IF( ILVSL )
        !           534:      $   CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
        !           535:      $                RWORK( IRIGHT ), N, VSL, LDVSL, IERR )
        !           536: *
        !           537:       IF( ILVSR )
        !           538:      $   CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
        !           539:      $                RWORK( IRIGHT ), N, VSR, LDVSR, IERR )
        !           540: *
        !           541: *     Undo scaling
        !           542: *
        !           543:       IF( ILASCL ) THEN
        !           544:          CALL ZLASCL( 'U', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
        !           545:          CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
        !           546:       END IF
        !           547: *
        !           548:       IF( ILBSCL ) THEN
        !           549:          CALL ZLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
        !           550:          CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
        !           551:       END IF
        !           552: *
        !           553:       IF( WANTST ) THEN
        !           554: *
        !           555: *        Check if reordering is correct
        !           556: *
        !           557:          LASTSL = .TRUE.
        !           558:          SDIM = 0
        !           559:          DO 30 I = 1, N
        !           560:             CURSL = SELCTG( ALPHA( I ), BETA( I ) )
        !           561:             IF( CURSL )
        !           562:      $         SDIM = SDIM + 1
        !           563:             IF( CURSL .AND. .NOT.LASTSL )
        !           564:      $         INFO = N + 2
        !           565:             LASTSL = CURSL
        !           566:    30    CONTINUE
        !           567: *
        !           568:       END IF
        !           569: *
        !           570:    40 CONTINUE
        !           571: *
        !           572:       WORK( 1 ) = MAXWRK
        !           573:       IWORK( 1 ) = LIWMIN
        !           574: *
        !           575:       RETURN
        !           576: *
        !           577: *     End of ZGGESX
        !           578: *
        !           579:       END

CVSweb interface <joel.bertrand@systella.fr>